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0

Preliminary

0.1 Inverse limits and Galois theory

0.1.1 Inverse limits.

In this subsection, we always assume that A is a category with infinite prod-
ucts. In particular, one can let A be the category of sets, of (topological)
groups, of (topological) rings, of left (topological) modules over a ring A. Re-
call that a partially ordered set I is called a directed set if for any i, j ∈ I,
there exists k ∈ I such that i ≤ k and j ≤ k.

Definition 0.1. Let I be a directed set. Let (Ai)i∈I be a family of objects
in A . This family is called an inverse system(or a projective system) of A
over the index set I if for every pair i ≤ j ∈ I, there exists a morphism
ϕji : Aj → Ai such that the following two conditions are satisfied:

(1) ϕii = Id;
(2) For every i ≤ j ≤ k, ϕki = ϕjiϕkj.

Definition 0.2. The inverse limit(or projective limit) of a given inverse sys-
tem A• = (Ai)i∈I is defined to be an object A in A

A = lim←−
i∈I

Ai =
{

(ai) ∈
∏
i∈I

Ai : ϕji(aj) = ai for every pair i ≤ j
}
,

such that the natural projection ϕi : A→ Ai, a = (aj)j∈I 7→ ai is a morphism
for each i ∈ I.

Remark 0.3. One doesn’t need the set I to be a directed set but only to be
a partially ordered set to define an inverse system. For example, let I be a
set with trivial ordering, i.e. i ≤ j if and only if i = j, then lim←−

i∈I
Ai =

∏
i∈I

Ai.

However, this condition is usually satisfied and often needed in application.

By the inverse system condition, one can see immediately ϕi = ϕjiϕj for
every pair i ≤ j. Actually, A is the solution of the universal problem:
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Proposition 0.4. Let (Ai) be an inverse system in A , A be its inverse limit
and B be an object in A . If there exist morphisms fi : B → Ai for all
i ∈ I such that for every pair i ≤ j, fi = ϕji ◦ fj, then there exists a unique
morphism f : B → A such that fj = ϕj ◦ f .

Proof. This is an easy exercise. ut

By definition, if A is the category of topological spaces, i.e., if Xi is a
topological space for every i ∈ I and ϕij ’s are continuous maps, then X =
lim←−
i∈I

Xi is a topological space equipped with a natural topology, the weakest

topology such that all the ϕi’s are continuous. Recall that the product topology
of the topological space

∏
i∈I

Xi is the weakest topology such that the projection

prj :
∏
i∈I

Xi → Xj is continuous for every j ∈ I. Thus the natural topology

of X is the topology induced as a closed subset of
∏
i∈I

Xi with the product

topology.
For example, if each Xi is endowed with the discrete topology, then X is

endowed with the topology of the inverse limit of discrete topological spaces.
In particular, if each Xi is a finite set endowed with discrete topology, then
we will get a profinite set (inverse limit of finite sets). In this case, since
lim←−Xi ⊂

∏
i∈I

Xi is closed, and since
∏
i∈I

Xi, as the product space of compact

spaces, is still compact, lim←−Xi is compact too. In this case one can see that
lim←−Xi is also totally disconnected.

If moreover, each Xi is a (topological) group and if the ϕij ’s are (continu-
ous) homomorphisms of groups, then lim←−Xi is a group with ϕi : lim←−j Xj → Xi

a (continuous) homomorphism of groups.
If the Xi’s are finite groups endowed with discrete topology, the inverse

limit in this case is a profinite group. Thus a profinite group is always compact
and totally disconnected. As a consequence, all open subgroups of a profinite
group are closed, and a closed subgroup is open if and only if it is of finite
index.

Example 0.5. (1) For the set of positive integers N∗, we define an ordering
n ≤ m if n | m. For the inverse system (Z/nZ)n∈N∗ of finite rings where the
transition map ϕmn is the natural projection, the inverse limit is

Ẑ = lim←−
n∈N∗

Z/nZ

.
(2) Let ` be a prime number, for the sub-index set {`n : n ∈ N} of N∗,

Z` = lim←−
n∈N

Z/`nZ
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is the ring of `-adic integers. The ring Z` is a complete discrete valuation ring
with the maximal ideal generated by `, the residue field Z/`Z = Fl, and the
fraction field

Q` = Z`
[
1
`

]
=
∞⋃
m=0

`−mZ`

being the field of `-adic numbers.
If N ≥ 1, let N = `r11 `

r2
2 · · · `

rh

h be its primary factorization. Then the
isomorphism

Z/NZ '
h∏
i=1

Z/`ri
i Z

induces an isomorphism of topological rings

Ẑ '
∏

` prime number

Z`.

0.1.2 Galois theory.

Let K be a field and L be a (finite or infinite) Galois extension of K. The
Galois group Gal(L/K) is the group of the K-automorphisms of L, i.e.,

Gal(L/K) = {g : L ∼→ L, g(γ) = γ for all γ ∈ K}.

Denote by E the set of finite Galois extensions of K contained in L and
order this set by inclusion, then for any pair E,F ∈ E , one has EF ∈ E and
E,F ⊂ EF , thus E is in fact a directed set and L =

⋃
E∈E

E. As a result, we

can study the inverse limits of objects over this directed set. For the Galois
groups, by definition,

γ = (γE) ∈ lim←−
E∈E

Gal(E/K) if and only if (γF )|E = γE for E ⊂ F ∈ E .

Galois theory tells us that the following restriction map is an isomorphism

Gal(L/K) ∼−→ lim←−
E∈E

Gal(E/K)

g 7−→ (g|E) : g|E the restriction of g in E.

From now on, we identify the two groups through the above isomorphism. Put
the topology of the inverse limit with the discrete topology on each Gal(E/K),
the group G = Gal(L/K) is then a profinite group, endowed with a compact
and totally disconnected topology, which is called the Krull topology. We have

Theorem 0.6 (Fundamental Theorem of Galois Theory). There is a
one-one correspondence between intermediate field extensions K ⊂ K ′ ⊂ L
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and closed subgroups H of Gal(L/K) given by K ′ → Gal(L/K ′) and H → LH

where LH = {x ∈ L | g(x) = x for all g ∈ H} is the invariant field of H.
Moreover, the above correspondence gives one-one correspondences between

finite extensions (resp. finite Galois extensions, Galois extensions) of K con-
tained in L and open subgroups (resp. open normal subgroups, closed normal
subgroups) of Gal(L/K).

Remark 0.7. (1) Given an element g and a sequence (gn)n∈N of Gal(L/K),
the sequence (gn)n∈N converges to g if and only if for all E ∈ E , there exists
nE ∈ N such that if n ≥ nE , then gn|E = g|E .

(2) The open normal subgroups of G are the groups Gal(L/E) for E ∈ E ,
and there is an exact sequence

1−→Gal(L/E)−→Gal(L/K)−→Gal(E/K) −→ 1.

(3) A subgroup of G is open if and only if it contains an open normal
subgroup. A subset X of G is an open set if and only if for all x ∈ X, there
exists an open normal subgroup Hx such that xHx ∈ X.

(4) If H is a subgroup of Gal(L/K), then LH = LH with H being the
closure of H in Gal(L/K).

We first give an easy example:

Example 0.8. Let K be a finite field with q elements, and let K be an algebraic
closure of K with Galois group G = Gal(K/K).

For each n ∈ N, n ≥ 1, there exists a unique extension Kn of degree
n of K contained in Ks. The extension Kn/K is cyclic with Galois group
Gal(Kn/K) ' Z/nZ = 〈ϕn〉 where ϕn = (x 7→ xq) is the arithmetic Frobenius
of Gal(Kn/K). We have the following diagram

G
∼−−−−→ lim←−Gal(Kn/K)yo yo

Ẑ ∼−−−−→ lim←−Z/nZ.

Thus the Galois group G ' Ẑ is topologically generated by ϕ ∈ G: ϕ(x) = xq

for x ∈ Ks, i.e., with obvious conventions, any elements of G can be written
uniquely as g = ϕa with a ∈ Ẑ. The element ϕ is called the arithmetic
Frobenius and its inverse ϕ−1 is called the geometric Frobenius of G.

If K = Fp, the arithmetic Frobenius (x 7→ xp) is called the absolute Frobe-
nius and denoted as σ. Moreover, for any field k of characteristic p, we call the
endomorphism σ : x 7→ xp the absolute Frobenius of k. σ is an automorphism
if and only if k is perfect.

In the case K = Q, let Q be an algebraic closure of Q, and let GQ =
Gal(Q/Q).
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The structure of GQ is far from being completely understood. An open
question is: Let J be a finite groups. Is it true that there exists a finite Galois
extension of Q whose Galois group is isomorphic to J? There are cases where
the answer is known(eg. J is abelian, J = Sn, J = An, etc).

For each place p of Q (i.e., a prime number or ∞), let Qp be a chosen
algebraic closure of the p-adic completion Qp of Q (for p =∞, we let Qp = R
and Qp = C). Choose for each p an embedding σp : Q ↪→ Qp. From the
diagram

Q −−−−→ Qpx x
Q −−−−→ Qp

one can identify Gp = Gal(Qp/Qp) to a closed subgroup of GQ, called the
decomposition subgroup of G at p. To study GQ, it is necessary and important
to know properties about each Gp.

This phenomenon is not unique. There is a generalization of the above
to number fields, i.e., a finite extension of Q, whose completions are finite
extensions of Qp. There is also an analogue for global function fields, i.e.,
finite extensions of k(x) with k a finite field, whose completions are of the
type k′((y)), where k′ is a finite extension of k. As a consequence, we are led
to study the properties of local fields.

0.2 Witt vectors and complete discrete valuation rings

0.2.1 Nonarchimedean fields and local fields.

First let us recall the definition of valuation.

Definition 0.9. Let A be a ring. If v : A→ R∪{+∞} is a function such that
(1) v(a) = +∞ if and only if a = 0,
(2) v(ab) = v(a) + v(b),
(3) v(a+ b) ≥ min{v(a), v(b)},

and if there exists a ∈ A such that v(a) /∈ {0,+∞}, then v is called a (non-
trivial) valuation on A. If v(A) is a discrete subset of R, v is called a discrete
valuation.

The above definition of valuation is usually called a valuation of height 1.
For a ring A with a valuation v, one can always define a topology to A

with a neighborhood basis of 0 given by {x : v(x) > n}, then A becomes a
topological ring. The valuation v on A defines an absolute value: |a| = e−v(a).
For any a ∈ A, then

a is small⇔ |a| is small⇔ v(a) is big.
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If v1 and v2 are valuations on A, then v1 and v2 are equivalent if there exists
r ∈ R, r > 0, such that v2(a) = rv1(a) for any a ∈ A. Thus v1 and v2 are
equivalent if and only if the induced topologies in A are equivalent.

If A is a ring with a valuation v, then A is always a domain: if ab = 0 but
b 6= 0, then v(b) < +∞ and v(a) = v(ab) − v(b) = +∞, hence a = 0. Let
K be the fraction field of A, we may extend the valuation to K by v(a/b) =
v(a)− v(b). Then the ring of valuations (often called the ring of integers)

OK = {a ∈ K | v(a) ≥ 0} (0.1)

is a local ring, with the maximal ideal mK given by

mK = {a ∈ K | v(a) > 0}, (0.2)

and kK = OK/mK being the residue field.

Definition 0.10. A field K with a valuation v is called a valuation field.

A valuation field is nonarchimedean: the absolute value | | defines a metric
on K, which is ultrametric, since |a + b| ≤ max(|a|, |b|). Let K̂ denote the
completion of K of the valuation v. Choose π ∈ OK , π 6= 0, and v(π) > 0, let

OK̂ = lim←−OK/(π
m).

Then OK̂ is again a domain and K̂ = OK̂ [1/π].

Remark 0.11. The ring OK̂ does not depend on the choice of π. Indeed, if
v(π) = r > 0, v(π′) = s > 0, for any n ∈ N, there exists mn ∈ N, such that
πmn ∈ π′nOK , so

lim←−OK/(π
m) ∼−→ lim←−OK/(π

′n).

Definition 0.12. A field complete with respect to a valuation v is called a
complete nonarchimedean field.

We quote the following well-known result of valuation theory:

Proposition 0.13. If F is a complete nonarchimedean field with a valuation
v, and F ′ is any algebraic extension of F , then there is a unique valuation v′

on F ′ such that v′(x) = v(x), for any x ∈ F . Moreover, F ′ is complete if and
only if F ′/F is finite. If α, α′ ∈ F ′ are conjugate, then v(α) = v(α′).

Remark 0.14. By abuse of notations, we will set the extended valuation v′ = v.

Let F be a complete field with respect to a discrete valuation, let F ′ be
any algebraic extension of F . We denote by vF the unique valuation of F ′

extending the given valuation of F such that vF (F ∗) = Z. vF is called the
normalized valuation of F .

If F is a field with a valuation, for any a ∈ mF , a 6= 0, let va denote the
unique valuation of F equivalent to the given valuation such that va(a) = 1.
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Definition 0.15. A local field is a complete discrete valuation field whose
residue field is perfect of characteristic p > 0. Thus a local field is always a
complete nonarchimedean field.

A p-adic field is a local field of characteristic 0.

Example 0.16. A finite extension of Qp is a p-adic field. In fact, it is the only
p-adic field whose residue field is finite.

Let K be a local field with the normalized valuation and perfect residue
field k, char k = p > 0. Let π be a uniformizing parameter of K. Then
vK(π) = 1 and mK = (π). One has an isomorphism

OK
∼−→ lim←−

n

OK/mn
K = lim←−

n

OK/(πn),

the topology defined by the valuation for OK is the same as the topology of
the inverse limit with the discrete topology in each OK/mn

K . Thus we have
the following propositions:

Proposition 0.17. The local field K is locally compact (equivalently, OK is
compact) if and only if the residue field k is finite.

Proposition 0.18. Let S be a set of representatives of k in OK . Then every
element x ∈ OK can be uniquely written as

x =
∑
i≥0
si∈S

siπ
i (0.3)

and x ∈ K can be uniquely written as

x =
∑
i≥−n
si∈S

siπ
i. (0.4)

As p ∈ mK , by the binomial theorem, for a, b ∈ OK , we have the following
fact:

a ≡ bmodmK =⇒ ap
n

≡ bp
n

modmn+1
K for n ≥ 0. (0.5)

Proposition 0.19. For the natural map OK → k, there is a natural section
r : k → OK which is unique and multiplicative.

Proof. Let a ∈ k. For any n ∈ N, there exists a unique an ∈ k such that
ap

n

n = a, apn+1 = an. Let ân be a lifting of an in OK .

By (0.5), âpn+1 ≡ ân modmK implies that âp
n+1

n+1 ≡ âp
n

n modmn+1
K . There-

fore r(a) := lim
n→∞

âp
n

n exists. By (0.5) again, r(a) is found to be independent
of the choice of the liftings of the ân’s. It is easy to check that r is a section of
ρ and is multiplicative. Moreover, if t is another section, we can always choose
ân = t(an), then

r(a) = lim
n→∞

âp
n

n = lim
n→∞

t(an)p
n

= t(a),

hence the uniqueness follows. ut
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Remark 0.20. This element r(a) is usually called the Teichmüller representa-
tive of a, often denoted as [a].

If char(K) = p, then r(a+ b) = r(a) + r(b) since (ân + b̂n)p
n

= âp
n

n + b̂p
n

n .
Thus r : k → OK is a homomorphism of rings. We can use it to identify k
with a subfield of OK . Then

Theorem 0.21. If OK is a complete discrete valuation ring, k is its residue
field and K is its quotient field. Let π be a uniformizing parameter of OK .
Suppose that OK (or K) and k have the same characteristic, then

OK = k[[π]], K = k((π)).

Proof. We only need to show the case that char(k) = 0. In this case, the
composite homomorphism Z ↪→ OK � k is injective and the homomorphism
Z→ OK extends to Q, hence OK contains a field Q. By Zorn’s lemma, there
exists a maximal subfield of OK . We denote it by S. Let S be its image in k.
We have an isomorphism S → S. It suffices to show that S = k.

First we show k is algebraic over S. If not, there exists a ∈ OK whose
image ā ∈ k is transcendental over S. The subring S[a] maps to S[ā], hence is
isomorphic to S[X], and S[a]∩mK = 0. Therefore OK contains the field S(a)
of rational functions of a, contradiction to the maximality of S.

Now for any α ∈ k, let f̄(X) be the minimal polynomial of S(α) over S.
Since char(k) = 0, f̄ is separable and α is a simple root of f̄ . Let f ∈ S[X] be
a lifting of f̄ . By Hensel’s Lemma, there exists x ∈ OK , f(x) = 0 and x̄ = α.
One can lift S[α] to S[x] by sending α to S. By the maximality of S, x ∈ S.
and thus k = S. ut

If K is a p-adic field, char(K) = 0, then r(a+ b) 6= r(a) + r(b) in general.
Witt vectors are useful to describe this situation.

0.2.2 Witt vectors.

Let p be a prime number, A be a commutative ring. Let Xi, Yi (i ∈ N) be
indeterminates and let

A[X,Y ] = A[X0, X1, · · · , Xn, · · · ;Y0, Y1, · · · , Yn, · · · ].

Lemma 0.22. For all Φ ∈ Z[X,Y ], there exists a unique sequence {Φn}n∈N
in Z[X,Y ] such that

Φ(Xpn

0 + pXpn−1

1 + · · ·+ pnXn, Y
pn

0 + Y p
n−1

1 + · · ·+ pn Yn)

= (Φ0(X,Y ))p
n

+ p (Φ1(X,Y ))p
n−1

+ · · ·+ pn Φn(X,Y ).
(0.6)

Moreover,
Φn ∈ Z[X0, X1, · · · , Xn;Y0, Y1, · · · , Yn].
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Proof. First we work in Z[ 1p ][X,Y ]. Set Φ0(X,Y ) = Φ(X0, Y0) and define Φn
inductively by

Φn(X,Y ) =
1
pn

(
Φ
( n∑
i=0

piXpn−i

i ,
n∑
i=0

piY p
n−i

i

)
−
n−1∑
i=0

piΦi(X,Y )p
n−i

)
.

Clearly Φn exists, is unique in Z[ 1p ][X,Y ], and is in Z[ 1p ][X0, · · · , Xn;Y0, · · · , Yn].
We only need to prove that Φn has coefficients in Z.

This is done by induction on n. For n = 0, Φ0 certainly has coefficients
in Z. Assuming Φi has coefficients in Z for i ≤ n, to show that Φn+1 has
coefficients in Z, we need to prove that

Φ(Xpn

0 + · · ·+ pnXn;Y
pn

0 + · · ·+ pnYn)

≡Φ0(X,Y )p
n

+ pΦ1(X,Y )p
n−1

+ · · ·+ pn−1Φn−1(X,Y )p mod pn.

One can verify that

LHS ≡ Φ(Xpn

0 + · · ·+ pn−1Xp
n−1;Y

pn

0 + · · ·+ pn−1Y pn−1) mod pn

≡ Φ0(Xp, Y p)p
n−1

+ pΦ1(Xp, Y p)p
n−2

+ · · ·+ pn−1Φn−1(Xp, Y p) mod pn.

By induction, Φi(X,Y ) ∈ Z[X,Y ], hence Φi(Xp, Y p) ≡ (Φi(X,Y ))p mod p,
and

piΦi(Xp, Y p)p
n−1−i

≡ pi · Φi(X,Y )p
n−i

mod pn.

Putting all these congruences together, we get the lemma. ut

Remark 0.23. The polynomials Wn =
n∑
i=0

piXpn−i

i (n ∈ N) are called the Witt

polynomials for the sequence (X0, · · · , Xn, · · · ). One can easily see that Xn ∈
Z[p−1][W0, · · · ,Wn] for each n.

For n ≥ 1, letWn(A) = An as a set. Applying the above lemma, if Φ = X+
Y , we set Si ∈ Z[X0, X1, · · · , Xi;Y0, Y1, · · · , Yi] to be the corresponding Φi; if
Φ = XY , we set Pi ∈ Z[X0, X1, · · · , Xi;Y0, Y1, · · · , Yi] to be the corresponding
Φi.

For two elements a = (a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1) ∈ Wn(A),
put

a+ b = (s0, s1, · · · , sn−1), a · b = (p0, p1, · · · , pn−1),

where

si = Si(a0, a1, · · · , ai; b0, b1, · · · , bi), pi = Pi(a0, a1, · · · , ai; b0, b1, · · · , bi).

Remark 0.24. It is clear that

S0 = X0 + Y0, P0 = X0 Y0. (0.7)
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From (X0 + Y0)
p + pS1 = Xp

0 + pX1 + Y p0 + p Y1, we get

S1 = X1 + Y1 −
p−1∑
i=1

1
p

(
p

i

)
Xi

0 Y
p−i
0 . (0.8)

Also from (Xp
0 + pX1) (Y p0 + p Y1) = Xp

0 Y
p
0 + pP1, we get

P1 = X1 Y
p
0 +Xp

0 Y1 + pX1 Y1. (0.9)

But for general n, it is too complicated to write down Sn and Pn explicitly.

Consider the map

Wn(A)
ρ−→ An

(a0, a1, · · · , an−1) 7−→ (w0, w1, · · · , wn−1)

where wi = Wi(a) = ap
i

0 + p ap
i−1

1 + · · ·+ pi ai. Then

wi(a+ b) = wi(a) + wi(b) and wi(ab) = wi(a)wi(b).

We notice the following facts:

(1) If p is invertible in A, ρ is bijective and therefore Wn(A) is a ring
isomorphic to An.

(2) If A has no p-torsion, by the injection A ↪→ A[ 1p ], then Wn(A) ⊂
Wn(A[ 1p ]). Thus Wn(A) is a subring with the identity 1 = (1, 0, 0, · · · ), as
a, b ∈ Wn(A) implies that a − b ∈ Wn(A), when applying Lemma 0.22 to
Φ = X − Y .

(3) In general, any commutative ring can be written as A = R/I with R
having no p-torsion. Then Wn(R) is a ring, and

Wn(I) = {(a0, a1, · · · , an) | ai ∈ I}

is an ideal of Wn(R). Then Wn(R/I) is the quotient of Wn(R) by Wn(I),
again a ring itself.

For the sequence of rings Wn(A), consider the maps

Wn+1(A) −→ Wn(A)
(a0, a1, · · · , an) 7−→ (a0, a1, · · · , an−1).

This is a surjective homomorphism of rings for each n. Define

W (A) = lim←−
n∈N∗

Wn(A).

Put the topology of the inverse limit with the discrete topology on each
Wn(A), then W (A) can be viewed as a topological ring. An element in W (A)
is written as (a0, a1, · · · , ai, · · · ).
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Definition 0.25. The ring Wn(A) is called the ring of Witt vectors of length
n of A, an element of it is called a Witt vector of length n.

The ring W (A) is called the ring of Witt vectors of A (of infinite length),
an element of it is called a Witt vector.

By construction, W (A) as a set is isomorphic to AN. For two Witt vectors
a = (a0, a1, · · · , an, · · · ), b = (b0, b1, · · · , bn, · · · ) ∈ W (A), the addition and
multiplication laws are given by

a+ b = (s0, s1, · · · , sn, · · · ), a · b = (p0, p1, · · · , pn, · · · ).

The map

ρ : W (A)→ AN, (a0, a1, · · · , an, · · · ) 7→ (w0, w1, · · · , wn, · · · )

is a homomorphism of commutative rings and ρ is an isomorphism if p is
invertible in A.

Example 0.26. One has W (Fp) = Zp.

Wn and W are actually functorial: let h : A −→ B be a ring homomor-
phism, then we get the ring homomorphisms

Wn(h) : Wn(A) −→ Wn(B)
(a0, a1, · · · , an−1) 7−→ (h(a0), h(a1), · · · , h(an−1))

for n ≥ 1 and similarly the homomorphism W (h) : W (A)→W (A).

Remark 0.27. In fact, Wn is represented by an affine group scheme over Z:

Wn = Spec(B), where B = Z[X0, X1, · · · , Xn−1].

with the comultiplication

m∗ : B −→ B ⊗Z B ' Z[X0, X1, · · · , Xn−1;Y0, Y1, · · · , Yn−1]

given by

Xi 7−→ Xi ⊗ 1, Yi 7−→ 1⊗Xi, m∗Xi = Si(X0, X1, · · · , Xi;Y0, Y1, · · · , Yi).

Remark 0.28. If A is killed by p, then

Wn(A) wi−→ A

(a0, a1, · · · , an−1) 7−→ ap
i

0 .

So ρ is given by

Wn(A)
ρ−→ An

(a0, a1, · · · , an−1) 7−→ (a0, a
p
0, · · · , a

pn−1

0 ).

In this case ρ certainly is not an isomorphism. Similarly ρ : W (A) → AN is
not an isomorphism either.
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Maps related to the ring of Witt vectors.

Let A be a commutative ring. We can define the following maps ν, r and ϕ
related to W (A).

(1) The shift map ν.
We define

ν : W (A)→W (A), (a0, · · · , an, · · · ) 7→ (0, a0, · · · , an, · · · ),

which is called the shift map. It is additive: it suffices to verify this fact when
p is invertible in A, and in that case the homomorphism ρ : W (A) → AN

transforms ν into the map which sends (w0, w1, · · · ) to (0, pw0, · · · ).
By passage to the quotient, one deduces from ν an additive map of Wn(A)

into Wn+1(A). There are exact sequences

0 −→Wk(A) νr

−→Wk+r(A) −→Wr(A) −→ 0. (0.10)

(2) The Teichmüller map r.
We define a map

r : A→W (A), x 7→ [x] = (x, 0, · · · , 0, · · · ).

When p is invertible in A, ρ transforms r into the mapping that sends x to
(x, xp, · · · , xpn

, · · · ). One deduces by the same reasoning as in (1) the following
formulas:

r(xy) = r(x)r(y), x, y ∈ A (0.11)

(a0, a1, · · · ) =
∞∑
n=0

νn(r(an)), ai ∈ A (0.12)

r(x) · (a0, · · · ) = (xa0, x
pa1, · · · , xp

n

an, · · · ), x, ai ∈ A. (0.13)

(3) The Frobenius map ϕ.
Suppose k is a ring of characteristic p. The homomorphism

k → k, x 7→ xp

induces a ring homomorphism:

ϕ : W (k)→W (k), (a0, a1, · · · ) 7→ (ap0, a
p
1, · · · ),

which is called the Frobenius map. If moreover, k is a perfect field, the Frobe-
nius on W (k) is often denoted as σ.
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0.2.3 Structure of complete discrete valuation rings with unequal
characteristic.

As an application of Witt vectors, we discuss the structure of complete dis-
crete valuation rings in the unequal characteristic case. The exposition in this
subsection follows entirely that in Serre [Ser80], Chap. II, §5.

Definition 0.29. We say that a ring A of characteristic p is perfect if the
endomorphism x→ xp of A is an automorphism, i.e., every element of x ∈ A
has a unique p-th root, denoted xp

−1
. When A is a field, this is the usual

definition of a perfect field.

Definition 0.30. If A is a ring which is Hausdorff and complete for a de-
creasing filtration of ideals a1 ⊃ a2 · · · such that am · an ⊂ am+n, and if the
ring A/a1 is perfect of characteristic p, then A is called a p-ring. If further-
more the filtration is the p-adic filtration {pnA}n∈N, with the residue ring
k = A/pA perfect, and if p is not a zero-divisor in A, then A is called a strict
p-ring.

Proposition 0.31. Let A be a p-ring, then:
(1) There exists one and only one system of representatives f : k → A

which commutes with p-th powers: f(λp) = f(λ)p.
(2) In order that a ∈ A belong to S = f(k), it is necessary and sufficient

that a be a pn-th power for all n ≥ 0.
(3) This system of representatives is multiplicative, i.e., one has f(λµ) =

f(λ)f(µ) for all λ, µ ∈ k.
(4) If A has characteristic p, this system of representatives is additive,

i.e., f(λ+ µ) = f(λ) + f(µ).

Proof. The proof is very similar to the proof of Proposition 0.19. We leave it
as an exercise. ut

Proposition 0.31 implies that when A is a p-ring, it always has the sys-
tem of multiplicative representatives f : A/a1 → A, and for every sequence
α0, · · · , αn, · · · , of elements of A/a1, the series

∞∑
i=0

f(αi)pi (0.14)

converges to an element a ∈ A. If furthermore A is a strict p-ring, every
element a ∈ A can be uniquely expressed in the form of a series of type

(0.14). Let βi = αp
i

i , then a =
∞∑
i=0

f(βp
−i

i )pi. We call {βi} the coordinates of
a.

Example 0.32. Let Xα be a family of indeterminates, and let S be the ring
of p−∞-polynomials in the Xα with integer coefficients, i.e., S =

⋃
n≥0

Z[Xp−n

α ]
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If one provides S with the p-adic filtration {pnS}n≥0 and completes it, one

obtains a strict p-ring that will be denoted Ŝ = ̂Z[Xp−∞
α ]. The residue ring

Ŝ/pŜ = Fp[Xp−∞

α ] is perfect of characteristic p. Since Xα admits pn-th roots
for all n, we identify Xα in Ŝ with its residue ring.

Suppose X0, · · · , Xn, · · · and Y0, · · · , Yn, · · · are indeterminates in the ring
̂Z[Xp−∞

i , Y p
−∞

i ]. Consider the two elements

x =
∞∑
i=0

Xip
i, y =

∞∑
i=0

Yip
i.

If ∗ is one of the operations +,×,−, then x ∗ y is also an element in the ring
and can be written uniquely of the form

x ∗ y =
∞∑
i=0

f(Q∗i )p
i, with Q∗i ∈ Fp[Xp−∞

i , Y p
−∞

i ].

As Q∗i are p−∞-polynomials with coefficients in the prime field Fp, one can
evaluate it in a perfect ring k of characteristic p. More precisely,

Proposition 0.33. If A is a p-ring with residue ring k and f : k → A is the
system of multiplicative representatives of A. Suppose {αi} and {βi} are two
sequences of elements in k. Then

∞∑
i=0

f(αi)pi ∗
∞∑
i=0

f(βi)pi =
∞∑
i=0

f(γi)pi

with γi = Q∗i (α0, α1, · · · ;β0, β1, · · · ).

Proof. One sees immediately that there is a homomorphism

θ : Z[Xp−∞

i , Y p
−∞

i ]→ A

which sends Xi to f(αi) and Yi to f(βi). This homomorphism extends by

continuity to ̂Z[Xp−∞

i , Y p
−∞

i ]→ A, which sends x =
∑
Xip

i to α =
∑
f(αi)pi

and y =
∑
Yip

i to β =
∑
f(βi)pi. Again θ induces, on the residue rings, a

homomorphism θ̄ : Fp[Xp−∞

i , Y p
−∞

i ] → k which sends Xi to αi and Yi to βi.
Since θ commutes with the multiplicative representatives, one thus has∑

f(αi)pi ∗
∑

f(βi)pi =θ(x) ∗ θ(y) = θ(x ∗ y)

=
∑

θ(f(Q∗i ))p
i =

∑
f(θ̄(Q∗i ))p

i,

this completes the proof of the proposition, as θ̄(Q∗i ) is nothing but γi. ut
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Definition 0.34. Let A be a complete discrete valuation ring, with residue
field k. Suppose A has characteristic 0 and k has characteristic p > 0. The
integer e = v(p) is called the absolute ramification index of A. A is called
absolutely unramified if e = 1, i.e., if p is a local uniformizer of A.

Remark 0.35. If A is a strict p-ring, and its residue ring A/pA is a field, then
A is a complete discrete valuation ring, absolutely unramified.

Proposition 0.36. Suppose A and A′ are two p-rings with residue rings k
and k′, suppose A is also strict. For every homomorphism h : k → k′, there
exists exactly one homomorphism g : A→ A′ such that the diagram

A
g−−−−→ A′y y

k
h−−−−→ k′

is commutative. As a consequence, two strict p-rings with the same residue
ring are canonically isomorphic.

Proof. For a =
∞∑
i=0

fA(αi)pi ∈ A, if g is defined, then

g(a) =
∞∑
i=0

g(fA(αi)) · pi =
∞∑
i=0

fA′(h(αi)) · pi,

hence the uniqueness. But by Proposition 0.33, g defined by the above way is
indeed a homomorphism. ut

Theorem 0.37. For every perfect ring k of characteristic p, there exists a
unique strict p-ring H with residue ring k. In fact H = W (k).

Proof. The uniqueness follows from Proposition 0.36. For the existence, if
k = Fp[Xp−∞

α ], then H = Ŝ satisfies the condition. In general, as every perfect
ring is a quotient of a ring of the type Fp[Xp−∞

α ], we just need to show if
h : k → k′ is a surjective homomorphism and if there exists a strict p-ring Hk

with residue ring k, then there exists a strict p-ring Hk′ with residue ring k′.
Indeed, for a, b ∈ Hk, we say a ≡ b if the images of their coordinates

by h are equal. This is an equivalence relation, and if a ≡ b, a′ ≡ b′, then
a ∗ a′ ≡ b ∗ b′ by Proposition 0.33. Let Hk′ be the quotient of Hk modulo this
equivalence relation. It is routine to check Hk′ is a strict p-ring with residue
ring k′.

Now for the second part, let H be the strict p-ring with residue ring k, and
let f : k → H be the multiplicative system of representatives of H. Define

θ : W (k)→ H, (a0, · · · , an, · · · ) 7→
∞∑
i=0

f(ap
−i

i )pi.



16 0 Preliminary

It is a bijection. When H = Ŝ, a = (X0, · · · ), b = (Y0, · · · ), we have

n∑
i=0

f(Xp−i

i )pi +
n∑
i=0

f(Y p
−i

i )pi = Wn(Xp−n

) +Wn(Y p
−n

)

= Wn(S0(Xp−n

, Y p
−n

), · · · ),

n∑
i=0

f(Si(a, b)p
−i

)pi = Wn(f(Si(a, b)p
−n

)).

Since

Si(Xp−n

, Y p
−n

) ≡ f(Si(Xp−n

, Y p
−n

)) = f(Si(a, b)p
−n

) mod p,

we get θ(a)+θ(b) ≡ θ(a+b) mod pn+1, for any n ≥ 0. Therefore, θ(a)+θ(b) =
θ(a + b). Similarly, θ(a)θ(b) = θ(ab). It follows that the formulas are valid
without any restriction on H, a and b. So θ is an isomorphism. ut

By the above theorem and Proposition 0.36, we immediately have:

Corollary 0.38. For k, k′ perfect rings of characteristic p, Hom(k, k′) =
Hom(W (k),W (k′)).

Corollary 0.39. If k is a field, perfect or not, then νϕ = p = ϕν.

Proof. It suffices to check this when k is perfect; in that case, applying the
isomorphism θ above, one finds:

θ(ϕνa) =
∞∑
i=0

f(ap
−i

i )pi+1 = pθ(a) = θ(pa),

which gives the identity. ut

Now we can state the main theorems of the unequal characteristic case.

Theorem 0.40. (1) For every perfect field k of characteristic p, W (k) is the
unique complete discrete valuation ring of characteristic 0 (up to unique iso-
morphism) which is absolutely unramified and has k as its residue field.

(2) Let A be a complete discrete valuation ring of characteristic 0 with a
perfect residue field k of characteristic p > 0. Let e be its absolute ramification
index. Then there exists a unique homomorphism of ψ : W (k) → A which
makes the diagram

W (k) //

!!DD
DD

DD
DD

A

����
��

��
��

k

commutative, moreover ψ is injective, and A is a free W (k)-module of rank
equal to e.
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Proof. (1) is a special case of Theorem 0.37.
For (2), the existence and uniqueness of ψ follow from Proposition 0.36,

since A is a p-ring. As A is of characteristic 0, ψ is injective. If π is a uniformizer

of A, then every a ∈ A can be uniquely written as a =
∞∑
i=0

f(αi)πi for αi ∈ k.

Replaced πe by p× (unit), then a is uniquely written as

a =
∞∑
i=0

e−1∑
j=0

f(αij) · πjpi, αij ∈ k.

Thus {1, π, · · · , πe−1} is a basis of A as a W (k)-module. ut

Remark 0.41. From now on, we denote the Teichmüller representative r(a)
of a ∈ k by [a], then by the proof of Theorem 0.37, the homomorphism
ψ : W (k)→ A in the above theorem is given by

ψ((a0, a1, · · · )) =
∞∑
n=0

pn[ap
−n

n ].

For the case A = W (k), for a ∈ k, the Teichmüller representative r(a) is the
same as the element r(a) = (a, 0, · · · ), we have

(a0, a1, · · · ) =
∞∑
n=0

pn[ap
−n

n ]. (0.15)

0.2.4 Cohen rings.

We have seen that if k is a perfect field, then the ring of Witt vectors W (k)
is the unique complete discrete valuation ring which is absolutely unramified
and with residue field k. However, if k is not perfect, the situation is more
complicated. We first quote two theorems without proof from commutative
algebra (cf. Matsumura [Mat86], § 29, pp 223-225):

Theorem 0.42 (Theorem 29.1, [Mat86]). Let (A, πA, k) be a discrete val-
uation ring and K an extension of k; then there exists a discrete valuation
ring (B, πB,K) containing A.

Theorem 0.43 (Theorem 29.2, [Mat86]). Let (A,mA, kA) be a complete
local ring, and (R,mR, kR) be an absolutely unramified discrete valuation ring
of characteristic 0 (i.e., mR = pR). Then for every homomorphism h : kR →
kA, there exists a local homomorphism g : R → A which induces h on the
ground field.

Remark 0.44. The above theorem is a generalization of Proposition 0.36. How-
ever, in this case there are possibly many g inducing h. For example, let
k = Fp(x) and A = Zp(x), then the homomorphism x 7→ x + α in A for any
α ∈ pZp induces the identity map in k.
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Applying A = Zp to Theorem 0.42, then if K is a given field of charac-
teristic p, there exists an absolutely unramified discrete valuation ring R of
characteristic 0 with residue field K. By Theorem 0.43, this ring R is unique
up to isomorphism.

Definition 0.45. Let k be a field of characteristic p > 0, the Cohen ring C(k)
is the unique (up to isomorphism) absolutely unramified discrete valuation
ring of characteristic 0 with residue field k.

We now give an explicit construction of C(k). Recall that a p-basis of a
field k is a set B of elements of k, such that

(1) [kp(b1, · · · , br) : kp] = pr for any r distinct elements b1, · · · , br ∈ B;
(2) k = kp(B).

If k is perfect, only the empty set is a p-basis of k; if k is imperfect, there
always exists nonempty sets satisfying condition (1), then any maximal such
set (which must exist, by Zorn’s Lemmma) must also satisfy (2) and hence is
a p-basis.

Let B be a fixed p-basis of k, then k = kp
n

(B) for every n > 0, and
Bp

−n

= {bp−n | b ∈ B} is a p-basis of kp
−n

. Let In =
∏
B{0, · · · , pn−1}, then

Tn =
{

bα =
∏
b∈B

bαb , α = (αb)b∈B ∈ In
}

generates k as a kp
n

-vector space, and in general T p
m

n is a basis of kp
m

over
kp

n+m

. Set

Cn+1(k) = the subring of Wn+1(k) generated by

Wn+1(kp
n

) and [b] for b ∈ B.

For x ∈ k, we define the Teichmüller representative [x] = (x, 0, · · · , 0) ∈
Wn+1(k). We also define the shift map V on Wn+1(k) by V ((x0, · · · , xn)) =
(0, x0, · · · , xn−1). Then every element x ∈Wn+1(k) can be written as

x = (x0, · · · , xn) = [x0] + V ([x1]) + · · ·+ V n([xn]).

We also has
[y]V r(x) = V r([yp

r

]x).

Then Cn+1(k) is nothing but the additive subgroup of Wn+1(k) generated by
{V r([(bα)p

r

x]) | bα ∈ Tn−r, x ∈ kp
n

, r = 0, · · · , n}. By Corollary 0.39, one
sees that

V r(ϕr([x])) = pr[x]modV r+1.

Let Ur be ideals of Cn+1(k) defined by

Ur = Cn+1(k) ∩ V r(Wn+1(k)).
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Then Ur is the additive subgroup generated by {V m([(bα)p
m

x]) | bα ∈
Tn−m, x ∈ kp

n

,m ≥ r}. Then we have Cn+1(k)/U1 ' k and the multipli-
cation

pr : Cn+1(k)/U1 −→ Ur/Ur+1

induces an isomorphism for all r ≤ n. Thus Un is generated by pn and
by decreasing induction, one has Ur = prCn+1(k). Moreover, for any x ∈
Cn+1(k)−U1, let y be a preimage of x̄−1 ∈ Cn+1(k)/U1, then xy = 1− z with
z ∈ U1 and xy(1 + z + · · ·+ zn) = 1, thus x is invertible. Hence we proved

Proposition 0.46. The ring Cn+1(k) is a local ring whose maximal ideal is
generated by p, whose residue field is isomorphic to k. For every r ≤ n,
the multiplication by pr induces an isomorphism of Cn+1(k)/pCn+1(k) with
prCn+1(k)/pr+1Cn+1(k), and pn+1Cn+1(k) = 0.

Lemma 0.47. The canonical projection pr : Wn+1(k) → Wn(k) induces a
surjection π : Cn+1(k)→ Cn(k).

Proof. By definition, the image of Cn+1(k) by pr is the subring of Wn(k)
generated by Wn(kp

n

) and [b] for b ∈ B, but Cn(k) is the subring generated
by Wn(kp

n−1
) and [b] for b ∈ B, thus the map π is well defined.

For n ≥ 1, the filtration Wn(k) ⊃ V (Wn(k)) · · · ⊃ V n−1(Wn(k)) ⊃
V n(Wn(k)) = 0 induces the filtration of Cn(k) ⊃ pCn(k) · · · ⊃ pn−1Cn(k) ⊃
pnCn(k) = 0. To show π is surjective, it suffices to show that the associate
graded map is surjective. But for r < n, we have the following commutative
diagram

prCn+1(k)/pr+1Cn+1(k)
grπ−−−−→ prCn(k)/pr+1Cn(k)

j

y j′
y

V rWn+1(k)/V r+1Wn+1(k) ' k
gr pr=Id−−−−−→ V rWn(k)/V r+1Wn(k) ' k

Since the inclusion j(resp. j′) identifies prCn+1(k)/pr+1Cn+1(k) (resp.
prCn(k)/pr+1Cn(k)) to kp

r

, thus grπ is surjective for r < n. For r = n,
pnCn(k) = 0. Then grπ is surjective at every grade and hence π is surjective.

ut

By Proposition 0.46, we thus have

Theorem 0.48. The ring lim←−n Cn(k) is the Cohen ring Cn(k) of k.

Remark 0.49. (1) By construction, C(k) is identified as a subring of W (k);
moreover, for k0 =

⋂
n∈N

kp
n

the largest perfect subfield of k, C(k) contains

W (k0).
(2) As C(k) contains the multiplicative representatives [b] for b ∈ B, it

contains all elements [Bα] and [B−α] for n ∈ N and α ∈ In.
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0.3 Galois groups of local fields

In this section, we let K be a local field with the residue field k = kK perfect
of characteristic p and the normalized valuation vK . Let OK be the ring of
integers of K, whose maximal ideal is mK . Let UK = O∗K = OK − mK be
the group of units and U iK = 1 + mi

K for i ≥ 1. Replacing K by L, a finite
separable extension of K, we get corresponding notations kL, vL,OL,mL, UL
and U iL. Recall the following notations:

• eL/K ∈ N∗: the ramification index defined by vK(L∗) = 1
eL/K

Z;
• e′L/K : the prime-to-p part of eL/K ;
• prL/K : the p-part of eL/K ;
• fL/K : the index of residue field extension [kL : k].

From previous section, if char(K) = p > 0, then K = k((π)) for π a uni-
formizing parameter of mK ; if char(K) = 0, let K0 = FracW (k) = W (k)[1/p],
then [K : K0] = eK = vK(p), and K/K0 is totally ramified.

0.3.1 Ramification groups of finite Galois extension.

Let L/K be a Galois extension with Galois group G = Gal(L/K). Then G
acts on the ring OL. We fix an element x of OL which generates OL as an
OK-algebra.

Lemma 0.50. Let s ∈ G, and let i be an integer ≥ −1. Then the following
three conditions are equivalent:

(1) s operates trivially on the quotient ring OL/mi+1
L .

(2) vL(s(a)− a) ≥ i+ 1 for all a ∈ OL.
(3) vL(s(x)− x) ≥ i+ 1 .

Proof. This is a trivial exercise. ut

Proposition 0.51. For each integer i ≥ −1, let Gi be the set of s ∈ G satisfy-
ing conditions (1), (2), (3) of Lemma 0.50. Then the Gi’s form a decreasing
sequence of normal subgroups of G. Moreover, G−1 = G, G0 is the inertia
subgroup of G and Gi = {1} for i sufficiently large.

Proof. The sequence is clearly a decreasing sequence of subgroups of G. We
want to show that Gi is normal for all i. For every s ∈ G and every t ∈ Gi,
since Gi acts trivially on the quotient ring OL/mi+1

L , we have sts−1(x) ≡
xmodmi+1

L , namely, sts−1 ⊆ Gi. Thus, Gi is a normal subgroup for all i. The
remaining part follows just by definition. ut

Definition 0.52. The group Gi is called the i-th ramification group of G (or
of L/K).

We denote the inertia subgroup G0 by I(L/K) and its invariant field by
L0 = (L/K)ur; we denote by G1 = P (L/K) and call it the wild inertia sub-
group of G, and denote its invariant field by L1 = (L/K)tame.
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Remark 0.53. The ramification groups define a filtration of G. The quotient
G/G0 is isomorphic to the Galois group Gal(kL/k) of the residue extension.

The field L0 is the maximal unramified subextension inside L. In Propo-
sition 0.57, we shall see that L1 is the maximal tamely ramified subextension
inside L.

Remark 0.54. LetH be a subgroup ofG andK ′ = LH . If x ∈ OL is a generator
of the OK-algebra OL, then it is also a generator of the OK′ -algebra OL. Then
Hi = Gi ∩H. In particular, the higher ramification groups of G are equal to
those of G0, therefore the study of higher ramification groups can always be
reduced to the totally ramified case.

We shall describe the quotient Gi/Gi+1 in the following.
Let π be a uniformizer of L.

Proposition 0.55. Let i be a non-negative integer. In order that an element
s of the inertia group G0 belongs to Gi, it is necessary and sufficient that
s(π)/π = 1modmi

L.

Proof. Replacing G by G0 reduces us to the case of a totally ramified exten-
sion. In this case π is a generator of OL as an OK-algebra. Since the formula
vL(s(π)−π) = 1+vL(s(π)/π−1), we have s(π)/π ≡ 1 modmi

L ⇔ s ∈ Gi. ut

We recall the following result:

Proposition 0.56. (1) U0
L/U

1
L = k∗L;

(2) For i ≥ 1, the group U iL/U
i+1
L is canonically isomorphic to the group

mi
L/m

i+1
L , which is itself isomorphic (non-canonically)to the additive group of

the residue field kL.

Back to the ramification groups, then the equivalence in Proposition 0.55
can be translated to

s ∈ Gi ⇐⇒ s(π)/π ∈ U iL.

We have a more precise description of Gi/Gi+1 following Proposition 0.56:

Proposition 0.57. The map which to s ∈ Gi, assigns s(π)/π, induces by
passage to the quotient an isomorphism θi of the quotient group Gi/Gi+1

onto a subgroup of the group U iL/U
i+1
L . This isomorphism is independent of

the choice of the uniformizer π.
(1) The group G0/G1 is cyclic, and is mapped isomorphically by θ0 onto

a subgroup of µ(kL), the group of roots of unity contained in kL. Its order is
prime to p, the characteristic of the residue field kL.

(2) If the characteristic of kL is p 6= 0, the quotients Gi/Gi+1, i ≥ 1,
are abelian groups, and are direct products of cyclic groups of order p. The
group G1 is a p-group, the inertia group G0 has the following property: it is
the semi-direct product of a cyclic group of order prime to p with a normal
subgroup whose order is a power of p.
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Remark 0.58. The group G0 is solvable. If k is a finite field, then G is also
solvable.

In fact, we can describe the cyclic group G0/G1 = I(L/K)/P (L/K) more
explicitly.

Let N = e′L/K = [L1 : L0]. The image of θ0 in k∗L is a cyclic group of
order N prime to p, thus kL = kL0 contains a primitive N th-root of 1 and
Im θ0 = µN (kL) = {ε ∈ kL | εN = 1} is of order N . By Hensel’s lemma, L0

contains a primitive N -th root of unity. By Kummer theory, there exists a
uniformizing parameter π of L0 such that

L1 = L0(α) with α a root of XN − π.

The homomorphism θ0 is the canonical isomorphism

Gal(L1/L0)
∼−→ µN (kL)

g 7−→ ε if g α = [ε]α,

where [ε] is the Teichmüller representative of ε.
By the short exact sequence

1 −→ Gal(L1/L0) −→ Gal(L1/K) −→ Gal(kL/k) −→ 1,

Gal(L1/K) acts on Gal(L1/L0) by conjugation. Because the group Gal(L1/L0)
is abelian, this action factors through an action of Gal(kL/k). The isomor-
phism Gal(L1/L0)

∼−→ µN (kL) then induces an action of Gal(kL/k) over
µN (kL), which is the natural action of Gal(kL/k).

0.3.2 Galois group of Ks/K.

Let Ks be a separable closure of K and GK = Gal(Ks/K). Let L be the set
of finite Galois extensions L of K contained in Ks, then

Ks =
⋃
L∈L

L, GK = lim←−
L∈L

Gal(L/K).

Let
Kur =

⋃
L∈L

L/K unramified

L, Ktame =
⋃
L∈L

L/K tamely ramified

L.

Then Kur and Ktame are the maximal unramified and tamely ramified exten-
sions of K contained in Ks respectively.

The valuation of K extends uniquely to Ks, but the valuation on Ks is
no more discrete, actually vK((Ks)∗) = Q, and Ks is no more complete for
the valuation.

The field k̄ = OKur/mKur is an algebraic closure of k. We use the notations
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– IK = Gal(Ks/Kur) is the inertia subgroup, which is a closed normal sub-
group of GK ;

– GK/IK = Gal(Kur/K) = Gal(k̄/k) = Gk;
– PK = Gal(Ks/Ktame) is the wild inertia subgroup, which is a closed nor-

mal subgroup of IK and of GK ;
– IK/PK = the tame quotient of the inertia subgroup.

Note that PK is a pro-p-group, an inverse limit of finite p-groups.
For each integer N prime to p, the N -th roots of unity µN (k̄) is cyclic of

order N . We get a canonical isomorphism

IK/PK
∼−→ lim←−

N∈N
N prime to p

ordering = divisibility

µN (k̄).

If N divides N ′, then N ′ = N m, and the transition map is

µN ′(k̄) −→ µN (k̄)
ε 7−→ εm.

Therefore we get

Proposition 0.59. If we write µ`∞ = Z`(1) (which is the Tate twist of Z`,
which we shall introduce in §1.1.4), then

IK/PK
'−−−−−−−→

canonically

∏
` 6=p

Z`(1). (0.16)

We denote
Ẑ′ =

∏
` 6=p

Z`, Ẑ′(1) =
∏
` 6=p

Z`(1),

where Ẑ′(1) is isomorphic, but not canonically to Ẑ′. Then

IK/PK ' Ẑ′(1) =
∏
` 6=p

Z`(1).

As GK/IK ' Gal(k̄/k), the action by conjugation of Gk on IK/PK gives the
natural action on Z`(1).

0.3.3 The functions Φ and Ψ .

Assume G = Gal(L/K) finite. Set

iG : G→ N, s 7→ vL(s(x)− x). (0.17)

The function iG has the following properties:
(1) iG(s) ≥ 0 and iG(1) = +∞;
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(2) iG(s) ≥ i+ 1⇐⇒ s ∈ Gi;
(3) iG(tst−1) = iG(s);
(4) iG(st) ≥ min(iG(t), iG(s)).

Let H be a subgroup of G. Let K ′ be the subextension of L fixed by H.
Following Remark 0.54, we have

Proposition 0.60. For every s ∈ H, iH(s) = iG(s), and Hi = Gi ∩H.

Suppose in addition that the subgroup H is normal, then G/H may be
identified with the Galois group of K ′/K.

Proposition 0.61. For every δ ∈ G/H,

iG/H(δ) =
1
e′

∑
s→δ

iG(s),

where e′ = eL/K′ .

Proof. For δ = 1, both sides are equal to +∞, so the equation holds.
Suppose δ 6= 1. Let x(resp. y) be an OK-generator of OL(resp. OK′). By

definition

e′iG/H(δ) = e′vK′(δ(y)− y) = vL(δ(y)− y), and iG(s) = vL(s(x)− x).

If we choose one s ∈ G representing δ, the other representatives have the
form st for some t ∈ H. Hence it come down to showing that the elements
a = s(y)− y and b =

∏
t∈H(st(x)− x) generate the same ideal in OL.

Let f ∈ OK′ [X] be the minimal polynomial of x over the intermediate field
K ′. Then f(X) =

∏
t∈H(X − t(x)). Denote by s(f) the polynomial obtained

from f by transforming each of its coefficients by s. Clearly s(f)(X) =
∏

(X−
st(x)). As s(f) − f has coefficients divisible by s(y) − y, one sees that a =
s(y)− y divides s(f)(x)− f(x) = s(f)(x) = ±b.

It remains to show that b divides a. Write y = g(x) as a polynomial in x,
with coefficients in OK . The polynomial g(X) − y has x as root and has all
its coefficients in OK′ ; it is therefore divisible by the minimal polynomial f :
g(X) − y = f(X)h(X) with h ∈ OK′ [X]. Transform this equation by s and
substitute x for X in the result; ones gets y − s(y) = s(f)(x)s(h)(x), which
shows that b = ±s(f)(x) divides a. ut

Let u be a real number ≥ 1. Define Gu = Gi where i is the smallest integer
≥ u. Thus

s ∈ Gu ⇐⇒ iG(s) ≥ u+ 1.

Put
Φ(u) =

∫ u

0

(G0 : Gt)−1dt, (0.18)

where for −1 ≤ t ≤ 0,
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(G0 : Gu) :=

{
(G−1 : G0)−1, when t = −1;
1, when− 1 < u ≤ 0.

Thus the function Φ(u) is equal to u between −1 and 0. For m ≤ u ≤ m+ 1
where m is a nonnegative integer, we have

Φ(u) =
1
g0

(g1 + g2 + ...+ gm + (u−m)gm+1), with gi = |Gi|. (0.19)

In particular,

Φ(m) + 1 =
1
g0

m∑
i=0

gi. (0.20)

Immediately one can verify

Proposition 0.62. (1) The function Φ is continuous, piecewise linear, in-
creasing and concave.

(2) Φ(0) = 0.
(3) If we denote by Φ′r and Φ′l the right and left derivatives of Φ, then

Φ′l = Φ′r = 1
(G0:Gu) , if u is not an integer; Φ′l = 1

(G0:Gu) and Φ′r = 1
(G0:Gu+1)

,
if u is an integer.

Moreover, the proposition above characterizes the function Φ.

Proposition 0.63. Φ(u) = 1
g0

∑
s∈G

min{iG(s), u+ 1} − 1.

Proof. Let θ(u) be the function on the right hand side. It is continuous and
piecewise linear. One has θ(0) = 0, and if m ≥ −1 is an integer and m < u <
m+ 1, then

θ′(u) =
1
g0

#{s ∈ G | iG(s) ≥ m+ 2} =
1

(G0 : Gm+1)
= Φ′(u).

Hence θ = Φ. ut

Theorem 0.64 (Herbrand). Let K ′/K be a Galois subextension of L/K
and H = G(L/K ′). Then one has Gu(L/K)H/H = Gv(K ′/K) where v =
ΦL/K′(u).

Proof. Let G = G(L/K), H = G(L/K ′). For every s′ ∈ G/H, we choose a
preimage s ∈ G of maximal value iG(s) and show that

iG/H(s′)− 1 = ΦL/K′(iG(s)− 1). (0.21)

Let m = iG(s). If t ∈ H belongs to Hm−1 = Gm−1(L/K ′), then iG(t) ≥ m,
and iG(st) ≥ m and so that iG(st) = m. If t /∈ Hm−1, then iG(t) < m and
iG(st) = iG(t). In both cases we therefore find that iG(st) = min{iG(t),m}.
Applying Proposition 0.61, since iG(t) = iH(t) and e′ = eL/K′ = |H0|, this
gives
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iG/H(s′) =
1
e′

∑
t∈H

iG(st) =
1
e′

∑
t∈H

min{iG(t),m}.

Proposition 0.63 gives the formula (0.21), which in turn yields

s′ ∈ Gu(L/K)H/H ⇐⇒ iG(s)− 1 ≥ u
⇐⇒ ΦL/K′(iG(s)− 1) ≥ ΦL/K′(u)⇐⇒ iK′/K(s′)− 1 ≥ ΦL/K′(u)
⇐⇒ s′ ∈ Gv(K ′/K), v = ΦL/K′(u).

Herbrand’s Theorem is proved. ut
Since the function Φ is a homeomorphism of [−1,+∞) onto itself, its in-

verse exists. We denote by Ψ : [−1,+∞)→ [−1,+∞) the inverse function of
Φ. The function Φ and Ψ satisfy the following transitivity condition:

Proposition 0.65. If K ′/K is a Galois subextension of L/K, then

ΦL/K = ΦK′/K ◦ ΦL/K′ and ΨL/K = ΨL/K′ ◦ ΨK′/K .

Proof. For the ramification indices of the extensions L/K, K ′/K and L/K ′

we have eL/K = eK′/KeL/K′ . From Herbrand’s Theorem, we obtain Gu/Hu =
(G/H)v, v = ΦL/K′(u). Thus

1
eL/K

|Gu| =
1

eK′/K
|(G/H)v|

1
eL/K′

|Hu|.

The equation is equivalent to

Φ′L/K(u) = Φ′K′/K(v)Φ′L/K′(u) = (ΦK′/K ◦ ΦL/K′)′(u).

As ΦL/K(0) = (ΦK′/K ◦ΦL/K′)(0), it follows that ΦL/K = ΦK′/K ◦ΦL/K′ and
the formula for Ψ follows similarly. ut

We define the upper numbering of the ramification groups by

Gv := Gu, where u = Ψ(v). (0.22)

Then GΦ(u) = Gu. We have G−1 = G, G0 = G0 and Gv = 1 for v � 0. We
also have

Ψ(v) =
∫ v

0

[G0 : Gw]dw. (0.23)

The advantage of the upper numbering of the ramification groups is that it is
invariant when passing from L/K to a Galois subextension.

Proposition 0.66. Let K ′/K be a Galois subextension of L/K and H =
G(L/K ′), then one has Gv(L/K)H/H = Gv(K ′/K).

Proof. We put u = ΨK′/K(v), G′ = GK′/K , apply the Herbrand theorem and
Proposition 0.65, and get

GvH/H =GΨL/K(v)H/H = G′ΦL/K′ (ΨL/K(v))

=G′ΦL/K′ (ΨL/K′ (u)) = G′u = G′v.

The proposition is proved. ut
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0.3.4 Ramification groups of infinite Galois extension.

Let L/K be a infinite Galois extension of local fields with Galois group G =
Gal(L/K). Then Gv, the ramification groups in upper numbering of G, is
defined to be lim←−Gal(L′/K)v, where L′ runs through the set of all finite
Galois subextension of L. Thus Gv form a filtration of G, and this filtration
is left continuous:

Gv =
⋂
w<v

Gw.

Moreover, Herbrand’s theorem is still true.

Proposition 0.67. Let L/K be an infinite Galois extension with group G.
If H is a closed normal subgroup of G, corresponding to the invariant field
LH = L′. Then

(1) If H is open in G, then Gv ∩H = HψG/H(v), where we write ΨG/H for
ΨL′/K .

(2) In general, (G/H)v = GvH/H.

Proof. (1) As H is open in G,

G = lim←−
N/H/G

N open in G

G/N, H = lim←−
N/H/G

N open in G

H/N, Gv = lim←−
N/H/G

N open in G

(G/N)v.

Let LN = L′′, consider the finite Galois extension L′′/L′/K, then (G/N)v ∩
H/N = (H/N)ΨG/H(v). Take the limit, then Gv ∩H = HΨG/H(v).

(2) If G/H is finite, for any normal open subgroup N of G contained in H,
by Herbrand’s Theorem, (G/H)v = (G/N)v · (H/N)/(H/N). Take the limit,
then (G/H)v = GvH/H in this case. In general,

(G/H)v = lim←−
H/M/G

(G/M)v = lim←−
H/M/G

GvM/M = GvH/H.

We thus have the proposition. ut

Definition 0.68. If for any v ≥ −1, Gv is an open subgroup of G, then the
extension L/K is called an arithmetically profinite extension (in abbev. APF
which stands arithmétiquement profinie in French).

If L/K is APF, then we can define

ΨL/K(v) =

{∫ v
0

(G0 : Gw)dw, if v ≥ 0;
v, if − 1 ≤ v ≤ 0.

Similarly as in the finite extension case, ΨL/K(v) is a homeomorphism of
[−1,+∞) to itself which is continuous, piecewise linear, increasing and concave
and satisfies Ψ(0) = 0. Let ΦL/K be the inverse function of Ψ . If the extension
L′/L is APF and L/K is finite, then the transitive formulas ΦL′/K = ΦL/K ◦
ΦL′/L and ΨL′/K = ΨL′/L ◦ ΨL/K still hold.
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0.3.5 Different and discriminant.

Let L/K be a finite separable extension of local fields. The ring of integers
OL is a free OK-module of finite rank.

Definition 0.69. The different DL/K of L/K is the inverse of the dual OK-
module of OL to the trace map inside L, i.e., an ideal of L given by

DL/K := {x ∈ L | Tr(x−1y) ∈ OK for y ∈ OL}. (0.24)

The discriminant δL/K is the ideal of K

[D−1
L/K : OL] := (det(ρ)) (0.25)

where ρ : D−1
L/K

∼−→ OL is an isomorphism of OK-modules.

For every x ∈ DL/K , certainly Tr(x−1) ∈ OK ; moreover, DL/K is the
maximal OL-module satisfying this property.

Suppose {ei} is a basis of OL over OK , let {e∗i } be the dual basis of D−1
L/K .

Define the isomorphism ρ by setting ei = ρ(e∗i ), then

δL/K = (det ρ)

and
detTr(ei, ei) = det ρ · det Tr(ei, e∗i ) = det ρ.

Thus the discriminant δL/K is given by

δL/K = (det Tr(eiej)) = (det(σj(ei)))2

where σj runs through K-monomorphisms of L into Ks. Note that (det ρ−1)
is the norm of the fractional ideal D−1

L/K , thus δL/K = NL/K(DL/K).

Proposition 0.70. Let a (resp. b) be a fractional ideal of K (resp. L), then

Tr(b) ⊂ a⇐⇒ b ⊂ a ·D−1
L/K .

Proof. The case a = 0 is trivial. For a 6= 0,

Tr(b) ⊂ a⇐⇒ a−1 Tr(b) ⊂ OK ⇐⇒ Tr(a−1b) ⊂ OK
⇐⇒ a−1b ⊂ D−1

L/K ⇐⇒ b ⊂ a ·D−1
L/K .

ut

Corollary 0.71. Let M/L/K be separable extensions of finite degrees. Then

DM/K = DM/L ·DL/K , δM/K = (δL/K)[M :L]NL/K(δM/L).
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Proof. Repeating the equivalence of Proposition 0.70 to show that

c ⊂ D−1
M/L ⇐⇒ c ⊂ DL/K ·D−1

M/K .

ut

Corollary 0.72. Let L/K be a finite extension of p-adic fields with ramifica-
tion index e. Let DL/K = mm

L . Then for any integer n ≥ 0, Tr(mn
L) = mr

K

where r = [(m+ n)/e], the largest integer less that (m+ n)/e.

Proof. Since the trace map is OK-linear, Tr(mn
L) is an ideal in OK . Now the

proposition shows that Tr(mn
L) ⊂ mr

K if and only if

mn
L ⊂ mr

K ·D−1
L/K = mer−m

L ,

i.e., if r ≤ (m+ n)/e. ut

Proposition 0.73. Let x ∈ OL such that L = K[x], let f(X) be the minimal
polynomial of x over K. Then DL/K = (f ′(x)) and δL/K = (NL/Kf ′(x)).

We need the following formula of Euler:

Lemma 0.74 (Euler).

Tr(xi/f ′(x)) =

{
0, if i = 0, · · · , n− 2;
1, if i = n− 1

(0.26)

where n = deg f .

Proof. Let xk (k = 1, · · · , n) be the conjugates of x in the splitting field
of f(X). Then Tr(xi/f ′(x) =

∑
k x

i
k/f
′(xk). Expanding both sides of the

identity
1

f(X)
=

n∑
k=1

1
f ′(xk)(X − xk)

into a power series of 1/X, and comparing the coefficients in degree ≤ n, then
the lemma follows. ut

Proof (Proof of Proposition 0.73). Since {1, · · · , xn−1} is a basis of OL, by
induction and the above Lemma, one sees that Tr(xm/f ′(x)) ∈ OK for every
m ∈ N. Thus xi/f ′(x) ∈ D−1

L/K . Moreover, the matrix (aij), 0 ≤ i, j ≤ n−1 for
aij = Tr(xi+j/f ′(x)) satisfies aij = 0 for i+j < n−1 and = 1 for i+j = n−1,
thus the matrix has determinant (−1)n(n−1). Hence xj/f ′(x), 0 ≤ j ≤ n − 1
is a basis of D−1

L/K . ut
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Proposition 0.75. Let L/K be a finite Galois extension of local fields with
Galois group G. Then

vL(DL/K) =
∑
s 6=1

iG(s) =
∞∑
i=0

(|Gi| − 1)

=
∫ ∞
−1

(|Gu| − 1)du = |G0|
∫ ∞
−1

(1− |Gv|−1)dv.

(0.27)

Thus
vK(DL/K) =

∫ ∞
−1

(1− |Gv|−1)dv. (0.28)

Proof. Let x be a generator of OL over OK and let f be its minimal polyno-
mial. Then DL/K is generated by f ′(x) by the above proposition. Thus

vL(DL/K) = vL(f ′(x)) =
∑
s 6=1

vL(x− s(x)) =
∑
s 6=1

iG(s).

The second and third equalities of (0.27) are easy. For the last equality,∫ ∞
−1

(1− |Gv|−1)dv =
∫ ∞
−1

(1− |Gu|−1)Φ′(u)du =
1
|G0|

∫ ∞
−1

(|Gu| − 1)du.

(0.28) follows easily from (0.27), since vK = 1
|G0|vL. ut

Corollary 0.76. Let L/M/K be finite Galois extensions of local fields. Then

vK(DL/M ) =
∫ ∞
−1

(
1

|Gal(M/K)|v
− 1
|Gal(L/K)|v

)
dv. (0.29)

Proof. This follows from the transitive relation DL/K = DL/MDM/K and
(0.28). ut

0.4 Ramification in p-adic Lie extensions

0.4.1 Sen’s filtration Theorem.

In this subsection, we shall give the proof of Sen’s theorem that the Lie fil-
tration and the ramification filtration agree in a totally ramified p-adic Lie
extension. We follow the beautiful paper of Sen [Sen72].

Let K be a p-adic field with perfect residue field k. Let L be a totally
ramified Galois extension of K with Galois group G = Gal(L/K). Let e =
eG = vK(p) be the absolute ramification index of K. If G is finite, put

vG = inf{v | v ≥ 0, Gv+ε = 1 for ε > 0}
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and
uG = inf{u | u ≥ 0, Gu+ε = 1 for ε > 0}.

Then
uG = ΨG(vG) ≤ |G|vG. (0.30)

Lemma 0.77. Assume L/K is a totally ramified finite Galois extension with
group G. There is a complete non-archimedean field extension L′/K ′ with the
same Galois group G such that the residue field of K ′ is algebraically closed
and the ramification groups of L/K and L′/K ′ coincide.

Proof. Pick a separable closure Ks of K containing L, then the maximal
unramified extension Kur of K inside Ks and L are linearly disjoint over K.
Let K ′ = K̂ur and L′ = L̂Kur, then Gal(L′/K ′) = Gal(L/K). Moreover, if x
generates OL as OK-algebra, then it also generates OL′ as OK′ -algebra, thus
the ramification groups coincide. ut

We now suppose G = A is a finite abelian p-group.

Proposition 0.78. If v ≤ eA

p−1 , then (Av)p ⊆ Apv; if v > eA

p−1 , then (Av)p =
Av+eA .

Proof. By the above lemma, we can assume that the residue field k is algebraic
closed. In this case, one can always find a quasi-finite field k0, such that k is
the algebraic closure of k0(cf. [Ser80], Ex.3, p.192). Regard K0 = W (k0)[ 1p ] a
subfield of K. By general argument from field theory (cf. [Ser80], Lemma 7,
p.89), one can find a finite extension K1 of K0 inside K and a finite totally
ramified extension L1 of K1, such that

(i) K/K1 is unramified and hence L1 and K are linearly disjoint over K1;
(ii)L1K = L.

Thus Gal(L1/K1) = Gal(L/K) and their ramification groups coincide. As
the residue field of K1 is a finite extension of k0, hence it is quasi-finite. The
proposition is reduced to the case that the residue field k is quasi-finite.

Now the proposition follows from the well-known facts that

Upv ⊂ Upv, if v ≤ eA
p− 1

Upv = Uv+e, if v >
eA
p− 1

.

and the following lemma. ut

Lemma 0.79. Suppose K is a complete discrete valuation field with quasi-
finite residue field. Let L/K be an abelian extension with Galois group A.
Then the image of UnK under the reciprocity map K∗ → G is dense in An.

Proof. This is an application of local class field theory, see Serre [Ser80], The-
orem 1, p.228 for the proof.
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Corollary 0.80. For n ∈ N, let A(n) be the n-torsion subgroup of A. If vA ≤
p
p−1eA, then vA ≥ pmvA/A(pm)

for all m ≥ 1; if vA > p
p−1eA, then vA =

vA/A(p)
+ eA.

Proof. If vA ≤ p
p−1eA, then tm = p−mvA ≤ 1

p−1eA, and (Atm+ε)p
m

=
Ap

mtm+ε = AvA+ε = 1 for ε > 0, then Atm+ε ⊂ A(pm) and thus vA/A(pm)
≤

p−mvA.
If vA > p

p−1eA, then t = vA− eA > 1
p−1eA, and (At+ε)p = A(t+ ε+ eA) =

A(vA + ε) for ε ≥ 0. Thus vA = vA/A(p)
+ eA. ut

Definition 0.81. We call A small if vA ≤ p
p−1eA, or equivalently, if (Ax)p ⊆

Apx for all x ≥ 0.

Lemma 0.82. If A is small, then for every m ≥ 1,

uA ≥ pm−1(p− 1)(A(pm) : A(p))uA/A(pm)
. (0.31)

Proof. For every ε > 0, we have

uA =ΨA(vA) =
∫ vA

0

(A : At)dt ≥
∫ vA

p−1vA+ε

(A : At)dt

≥(vA − p−1vA − ε)(A : Ap
−1vA+ε) ≥

(
vA ·

p− 1
p
− ε
)

(A : A(p)).

The last inequality holds since (Ap
−1vA+ε)p = 1 by Proposition 0.78. Then by

Corollary 0.80,

uA ≥ vA(A : A(p)) ·
p

p− 1
≥ pm−1(p− 1)vA/A(pm)

(A : A(p)).

Since uA/A(pm)
≤ vA/A(pm)

(A : A(pm)) by (0.30), we have the desired result.

We now suppose G is a p-adic Lie group of dimension d > 0 with a Lie
filtration {G(n)}. We suppose that G(1) is a non-trivial pro-p group and that

G(n) = G(n+ 1)p
−1

= {s ∈ G | sp ∈ G(n+ 1)}.

For n ≥ 1, we denote

Ψn = ΨG/G(n), vn = vG/G(n), un = uG/G(n) = Ψn(vn), en = eG(n). (0.32)

Proposition 0.83. For each n ≥ 1 we have Gv∩G(n) = G(n)Ψn(v) for v ≥ 0.
In particular,

Gv = G(n)un+(v−vn)(G:G(n)), for v > vn, (0.33)

i.e.,
Gvn+te = G(n)un+ten , for t > 0. (0.34)

As a consequence, for n, r ≥ 1,

vG(n)/G(n+r) = un + (vn+r − vn)(G : G(n)). (0.35)
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Proof. The first equality follows from Proposition 0.67. For v > vn, then
Gv ⊂ G(n) and

Ψn(v) = Ψn(vn) +
∫ v

vn

(G : G(n))dv = un + (v − vn)(G : G(n)).

Now v = vG(n)/G(n+r) is characterized by the fact that G(n)v * G(n+ r) and
G(n)v+ε ⊆ G(n + r) for all ε ≥ 0, but x = vn+r is characterized by the fact
that Gx * G(n + r) and Gx+ε ⊆ G(n + r) for all ε ≥ 0, thus (0.35) follows
from (0.33). ut

Proposition 0.84. There exists an integer n1 and a constant c such that for
all n ≥ n1,

vn+1 = vn + e and vn = ne+ c.

Proof. By (0.34), we can replace G by G(n0) for some fixed n0 and G(n) by
G(n0 + n). Thus we can suppose G = expL , where L is an order in the Lie
algebra Lie(G) such that [L ,L ] ⊂ p3L and that G(n) = exp pnL . Then
(G : G(n)) = pnd for all n, and for r ≤ n+ 1, there are isomorphisms

G(n)/G(n+ r)
log−→ pnL /pn+rL

p−n

−→ L /prL ∼= (Z/prZ)d. (0.36)

Thus G(n)/G(n+ d+ 3) is abelian for sufficient large n.
If G(n)/G(n + r) is abelian and small for r ≥ 2, then apply Lemma 0.82

with A = G(n)/G(n + r), m = r − 1. Note that in this case un+r = uA and
un+1 = uA/A(pr−1)

, then

un+r

en+r
≥ (p− 1)pr−2−d · un+1

en+1
.

But note that the sequence un/en ≤ 1
p−1 is bounded, then for r = d + 3,

G(n)/G(n+ d+ 3) can not be all small.
We can thus assume G(n0)/G(n1 +1) is not small, then by Corollary 0.80,

vG(n0)/G(n1+1) = vG(n0)/G(n1) + en0 ,

and by (0.35), then
vn1+1 = vn1 + e.

Hence G(n1)/G(n1 + 2) is not small and vn1+2 = vn1+1 + e. Continue this
procedure inductively, we have the proposition.

Theorem 0.85. There is a constant c such that

Gne+c ⊂ G(n) ⊂ Gne−c

for all n.
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Remark 0.86. The above theorem means that the filtration of G by ramifica-
tion subgroups with the upper numbering agrees with the Lie filtration. In
particular this means that a totally ramified p-adic Lie extension is APF.

If G = Zp, the above results were shown to be true by Wyman [Wym69],
without using class field theory.

Proof. We can assume the assumptions in the first paragraph of the proof of
Proposition 0.84 and (0.36) hold. We assume n ≥ n1 > 1.

Let c1 be the constant given in Proposition 0.84. Let c0 = c1 + αe
p−1 for

some constant α ≥ 1. By Proposition 0.84, Gne+c0 ⊂ G(n) for large n.
By (0.34),

Gne+c0 = Gvn+ αe
p−1 = G(n)un+ αen

p−1 .

Apply Proposition 0.78 to A = G(n)/G(2n + 1), since un + αen

p−1 > en

p−1 , we
have

(Gne+c0)pG(2n+ 1) = G(n+1)e+c0G(2n+ 1). (0.37)

Put
Mn = p−n log(Gne+c0G(2n)/G(2n)) ⊂ L /pnL .

Then (0.37) implies that Mn is the image of Mn+1 under the canonical map
L /pn+1L → L /pnL . Let

M = lim←−
n

Mn ⊂ L .

Then Mn = (M + pnL )/pnL . We let

I = QpM ∩L .

Since the ramification subgroups Gne+c0 are invariant in G, each Mn and
hence M is stable under the adjoint action of G on L . Hence QpM , as a
subspace of Lie(G), is stable under the adjoint action of G, hence is an ideal of
Lie(G) = QpL . As a result, I is an ideal in L . Let N = exp I and G = G/N .
Then G is a p-adic Lie group filtered by G(n) = exp pnL where L = L /I.

A key fact of Sen’s proof is the following Lemma:

Lemma 0.87. dimG = 0, i.e., G = 1.

Proof (Proof of the Lemma). If not, we can apply the previous argument to
G to get a sequence v̄n and a constant c̄1 such that v̄n = ne+ c̄1 for n ≥ n̄1.
But on the other hand, we have

G
ne+c0 = Gne+c0N/N ⊂ G(2n)N/N = G(2n)

since

Gne+c0G(2n)/G(2n) = exp(pnMn)

⊂ exp((pnI + p2nL )/p2nL ) = N(n)G(2n)/G(2n).

Hence for all n ≥ n1 and n̄1, one gets ne + c0 > v̄2n = 2ne + c̄1, which is a
contradiction. ut
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By the lemma, thus we have I = L , i.e., pn0L ⊂ M for some n0. Then
for large n,

pn0L /pnL ⊂ (pn0L +M)/pnL = Mn.

Applying the operation exp ◦pn, we get

G(n+ n0)/G(2n) ⊂ Gne+c0G(2n)/G(2n).

Thus Gne+c0 contains elements of G(n + n0) which generate G(n + n0)
modulo G(n + n0 + 1). It follows that Gne+c0 ⊃ G(n + n0) as Gne+c0 =
lim←−mG

ne+c0G(m)/G(m) is closed. This completes the proof of the theorem.
ut

0.4.2 Totally ramified Zp-extensions.

Let K be a p-adic field. Let K∞ be a totally ramified extension of K with
Galois group Γ = Zp. Let Kn be the subfield of K∞ which corresponds to
the closed subgroup Γ (n) = pnZp. Let γ be a topological generator of Γ and
γn = γp

n

be a generator of Γn.
For the higher ramification groups Γ v of Γ with the upper numbering,

suppose Γ v = Γ (i) for vi < v ≤ vi+1, then by Proposition 0.84 or by Wyman’s
result [Wym69], we have vn+1 = vn + e for n � 0. By Herbrand’s Theorem
(Theorem 0.64),

Gal(Kn/K)v = Γ vΓ (n)/Γ (n) =

{
Γ (i)/Γ (n), if vi < v ≤ vi+1, i ≤ n;
1, otherwise.

(0.38)

Proposition 0.88. Let L be a finite extension of K∞. Then

TrL/K∞(OL) ⊃ mK∞ .

Proof. Replace K by Kn if necessary, we may assume L = L0K∞ such that
L0/K is finite and linearly disjoint from K∞ over K. We may also assume
that L0/K is Galois. Put Ln = L0Kn. Then by (0.29),

vK(DLn/Kn
) =

∫ ∞
−1

(
|Gal(Kn/K)v|−1 − |Gal(Ln/K)v|−1

)
dv.

Suppose that Gal(L0/K)v = 1 for v ≥ h, then Gal(L/K)v ⊆ Γ and
Gal(Ln/K)v = Gal(Kn/K)v for v ≥ h. We have

vK(DLn/Kn
) ≤

∫ h

−1

|Gal(Kn/K)v|−1dv → 0

as n→∞ by (0.38). Now the proposition follows from Corollary 0.72. ut
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Corollary 0.89. For any a > 0, there exists x ∈ L, such that

vK(x) > −a and TrL/K∞(x) = 1. (0.39)

Proof. For any a > 0, find α ∈ OL such that vK(TrL/K∞(α)) is less than a.
Let x = α

TrL/K∞ (α) , then x satisfies (0.39). ut

Remark 0.90. Clearly the proposition and the corollary are still true if replac-
ing K∞ by any field M such that K∞ ⊂ M ⊂ L. (0.39) is called the almost
étale condition.

Proposition 0.91. There is a constant c such that

vK(DKn/K) = en+ c+ p−nan

where an is bounded.

Proof. We apply (0.38) and (0.28), then

vK(DKn/K) =
∫ ∞
−1

(1− |Gal(Kn/K)v|−1)dv = en+ c+ p−nan.

ut

Corollary 0.92. There is a constant c which is independent of n such that
for x ∈ Kn, we have

vK(p−n TrKn/K(x)) ≥ vK(x)− c.

Proof. By the above proposition, vK(DKn+1/Kn
) = e + p−nbn where bn is

bounded. Let On be the ring of integers of Kn and mn its maximal ideal, let
DKn+1/Kn

= md
n+1, then

TrKn+1/Kn
(mi

n+1) = mj
n,

where j =
[
i+d
p

]
(cf. Corollary 0.72). Thus

vK(p−1 TrKn+1/Kn
(x)) ≥ vK(x)− ap−n

for some a independent of n. The corollary then follows. ut

Definition 0.93. For x ∈ K∞, if x ∈ Kn+m, we define

Rn(x) = p−m TrKn+m/Kn
(x), R∗n+i(x) = Rn+i(x)−Rn+i−1(x).

Rn(x) is called Tate’s normalized trace map.

Remark 0.94. Use the transitive properties of the trace map and the fact
[Kn+m : Kn] = pm, one can easily see that p−m TrKn+m/Kn

(x) does not
depend on m such that x ∈ Kn+m.
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For n = 0, we write R0(x) = R(x).

Proposition 0.95. There exists a constant d > 0 such that for all x ∈ K∞,

vK(x−R(x)) ≥ vK(γx− x)− d.

Proof. We prove by induction on n an inequality

vK(x−R(x)) ≥ vK(γx− x)− cn, if x ∈ Kn (0.40)

with cn+1 = cn + ap−n for some constant a > 0.
For x ∈ Kn+1, let γn = γp

n

, then

px− TrKn+1/Kn
(x) = px−

p−1∑
i=0

γinx =
p−1∑
i=1

(1 + γn + · · ·+ γi−1
n )(1− γn)x,

thus
vK(x− p−1 TrKn+1/Kn

(x)) ≥ vK(x− γnx)− e.

In particular, let c1 = e, (0.40) holds for n = 1.
In general, for x ∈ Kn+1, then

R(TrKn+1/Kn
x) = pR(x), and (γ − 1) TrKn+1/Kn

(x) = TrKn+1/Kn
(γx− x).

By induction,

vK(TrKn+1/Kn
(x)− pR(x)) ≥vK(TrKn+1/Kn

(γx− x))− cn
≥vK(γx− x) + e− ap−n − cn,

thus

vK(x−R(x)) ≥ min(vK(x− p−1 TrKn+1/Kn
(x)), vK(γx− x)− cn − ap−n)

≥ vK(γx− x)−max(c1, cn + ap−n)

which establishes the inequality (0.40) for n+ 1. ut

Remark 0.96. If we take Kn as the ground field instead of K and replace R(x)
by Rn(x), from the proof we have a corresponding inequality with the same
constant d.

By Corollary 0.92, the linear operator Rn is continuous on K∞ for each n
and therefore extends to K̂∞ by continuity. As Kn is complete, Rn(K∞) = Kn

for each n. Denote
Xn := {x ∈ K̂∞, Rn(x) = 0}.

Then Xn is a closed subspace of K̂∞.
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Proposition 0.97. (1) K̂∞ = Kn ⊕Xn for each n.
(2) The operator γn − 1 is bijective on Xn and has a continuous inverse

such that
vK((γn − 1)−1(x)) ≥ vK(x)− d

for x ∈ Xn.
(3) If λ is a principal unit which is not a root of unity, then γ − λ has a

continuous inverse on K̂∞.

Proof. It suffices to prove the case n = 0.
(1) follows immediately from the fact that R = R ◦R is idempotent.
(2) For m ∈ N, let Km,0 = Km ∩ X0, then Km = K ⊕ Km,0 and X0

is the completion of K∞,0 = ∪Km,0. Note that Km,0 is a finite dimensional
K-vector space, the operator γ − 1 is injective on Km,0, and hence bijective
on Km,0 and on K∞,0. By Proposition 0.95, then

vK((γ − 1)−1y) ≥ vK(y)− d

for y = (γ − 1)x ∈ Km,0. Hence (γ − 1)−1 extends by continuity to X0 and
the inequality still holds.

(3) Since γ − λ is obviously bijective and has a continuous inverse on K
for λ 6= 1, we can restrict our attention to its action on X0. Note that

γ − λ = (γ − 1)(1− (γ − 1)−1(λ− 1)),

we just need to show that 1 − (γ − 1)−1(λ − 1) has a continuous inverse. If
vK(λ−1) > d for the d in Proposition 0.95, then VK((γ−1)−1(λ−1)(x)) > 1
in X0 and

1− (γ − 1)−1(λ− 1) =
∑
k≥0

((γ − 1)−1(λ− 1))k

is the continuous inverse in X0 and γ − λ has a continuous inverse in X.
In general, as d is unchanged if replacingK byKn, we can assume vK(λp

n−
1) > d for n� 0. Then γp

n − λpn

has a continuous inverse in X and so does
γ − λ. ut

0.5 Continuous Cohomology

0.5.1 Abelian cohomology.

Definition 0.98. Let G be a group. A G-module is an abelian group with a
linear action of G. If G is a topological group, a topological G-module is a
topological abelian group equipped with a linear and continuous action of G.
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Let Z[G] be the ring algebra of the group G over Z, that is,

Z[G] = {
∑
g∈G

agg : ag ∈ Z, ag = 0 for almost all g}.

A G-module may be viewed as a left Z[G]-module by setting

(
∑

agg)(x) =
∑

agg(x), for all ag ∈ Z, g ∈ G, x ∈ X.

The G-modules form an abelian category.
Let M be a topological G-module. For any n ∈ N, the abelian group of

continuous n-cochains Cncont(G,M) is defined as the group of continuous maps
Gn →M for n > 0, and for n = 0, C0

cont(G,M) := M . Let

dn : Cncont(G,M) −→ Cn+1
cont (G,M)

be given by

(d0a)(g) = g(a)− a;
(d1f)(g1, g2) = g1(f(g2))− f(g1g2) + f(g1);
(dnf)(g1, g2, · · · , gn, gn+1) = g1(f(g2, · · · , gn, gn+1))

+
n∑
i=1

(−1)if(g1, g2, · · · , gi−1, gigi+1, · · · , gn, gn+1)

+ (−1)n+1f(g1, g2, · · · , gn).

We have dn+1dn = 0, thus the sequence C•cont(G.M):

C0
cont(G,M) d0→ C1

cont(G,M) d1→ C2
cont(G,M) d2→ · · · dn−1−→ Cncont(G,M) dn→ · · ·

is a cochain complex.

Definition 0.99. Set

Zncont(G,M) = Ker dn, Bncont(G,M) = Im dn,

Hn
cont(G,M) = Zn/Bn = Hn(C•(G,M)).

These groups are called the group of continuous n-cocycles, the group of con-
tinuous n-coboundaries and the n-th continuous cohomology group of M re-
spectively.

Clearly we have

Proposition 0.100. (1) H0
cont(G,M) = Z0 = MG = {a ∈ M | g(a) =

a, for all g ∈ G}.
(2)

H1
cont(G,M) =

Z1

B1
=
{f : G→M | f continuous, f(g1g2) = g1f(g2) + f(g1)}

{sa = (g 7→ g · a− a) : a ∈M}
.
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Corollary 0.101. When G acts trivially on M , then

H0
cont(G,M) = M, H1

cont(G,M) = Hom(G,M).

The cohomological functors Hn(G,−) are functorial. If η : M1 → M2 is
a morphism of topological G-modules, then it induces a morphism of com-
plexes C•cont(G,M1) → C•cont(G,M2), which then induces morphisms from
Zncont(G,M1) (resp. Bncont(G,M1) or Hn

cont(G,M1)) to Zncont(G,M2) (resp.
Bncont(G,M2) or Hn

cont(G,M2)).

Proposition 0.102. For a short exact sequence of topological G-modules

0 −→M ′
α−→M

β−→M ′′ −→ 0,

then there is an exact sequence

0→M ′G →MG →M ′′G
δ→ H1

cont(G,M
′)→ H1

cont(G,M)→ H1
cont(G,M

′′),

where for any a ∈ (M ′′)G, δ(a) is defined as follows: choose x ∈M such that
β(x) = a, then define δ(a) to be the continuous 1-cocycle g 7→ α−1(g(x)− x).

Proof. Note that for any g ∈ G, β(g(x) − x) = β(g(x)) − β(x) = g(β(x)) −
β(x) = g(a)−a = 0, Thus g(x)−x ∈ Imα, so that α−1(g(x)−x) is meaningful.

The proof is routine. We omit it here. ut

Remark 0.103. From the above proposition, the functor H0
cont(G,−) is left

exact. In general, the category of topological G-modules does not have suf-
ficiently many injective objects, and it is not possible to have a long exact
sequence.

However, if β admits a continuous set theoretic section s : M ′′ →M , one
can define a map

δn : Hn
cont(G,M

′′) −→ Hn+1
cont (G,M

′), for all n ∈ N

to get a long exact sequence (ref. Tate [Tat76]).

Two special cases.

(1) If G is a group endowed with the discrete topology, set

Hn(G,M) = Hn
cont(G,M),

then one has a long exact sequence.
(2) If G is a profinite group and M is endowed with the discrete topology,
we also have a long exact sequence. In this situation, to say that G acts
continuously on M means that, for all a ∈ M , the group Ga = {g ∈ G |
g(a) = a} is open in G. In this case, M is called a discrete G-module. We set
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Hn(G,M) = Hn
cont(G,M).

Denote by H the set of normal open subgroups of G, then one sees that the
natural map

lim−→
H∈H

Hn(G/H,MH) ∼−→ Hn(G,M)

is an isomorphism.

Example 0.104. If G is a field and L is a Galois extension of K, then G =
Gal(L/K) is a profinite group and Hn(G,M) = Hn(L/K,M) is the so-called
Galois cohomology of M . In particular, if L = Ks is a separable closure of K,
we write Hn(G,M) = Hn(K,M).

0.5.2 Non-abelian cohomology.

Let G be a topological group. LetM be a topological group which may be non-
abelian, written multiplicatively. Assume M is a topological G-group, that is,
M is equipped with a continuous action of G such that g(xy) = g(x)g(y) for
all g ∈ G, x, y ∈M . We can define

H0
cont(G,M) = MG = {x ∈M | g(x) = x,∀g ∈ G}

and

Z1
cont(G,M) = {f : G→M continuous | f(g1g2) = f(g1) · g1f(g2)}.

If f, f ′ ∈ Z1
cont(G,M), we say that f and f ′ are cohomologous if there exists

a ∈M such that f ′(g) = a−1f(g)g(a) for all g ∈ G. This defines an equivalence
relation for the set of cocycles. The cohomology group H1

cont(G,M) is defined
to be the set of equivalence classes in Z1

cont(G,M). H1
cont(G,M) is actually

a pointed set with the distinguished point being the trivial class f(g) ≡ 1 for
all g ∈ G.

Definition 0.105. H1
cont(G,M) (abelian or non-abelian) is called trivial if it

contains only one element.

The above construction is functorial. If η : M1 → M2 is a continuous
homomorphism of topological G-modules, it induces a group homomorphism

MG
1 →MG

2

and a morphism of pointed sets

H1
cont(G,M1)→ H1

cont(G,M2).

We note here that a sequence X λ→ Y
µ→ Z of pointed sets is exact means

that λ(X) = {y ∈ Y | µ(y) = z0}, where λ, µ are morphisms of pointed sets
and z0 is the distinguished element in Z.
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Proposition 0.106. Let 1 → M ′
α−→ M

β−→ M ′′ → 1 be an exact sequence
of continuous topological G-groups. Then there exists a long exact sequence of
pointed sets:

1→M ′G
α0→MG β0→M ′′G

δ→ H1(G,M ′) α1→ H1(G,M)
β1→ H1(G,M ′′),

where the connecting map δ is defined as follows: Given c ∈M ′′G, pick b ∈ B
such that β(b) = c. Then

δ(c) = (s 7→ α−1(b−1sb)).

Proof. We first check that the map δ is well defined. First, β(b−1s(b)) =
β(b−1)sβ(b) = 1, then b−1s(b) ∈ Kerβ = Imα, as = α−1(b−1sb) ∈ M ′. To
simplify notations, from now on we take α to be the inclusion M ′ ↪→M . Then

ast = b−1st(b) = b−1s(b) · s(b−1t(b)) = ass(at),

thus as satisfies the cocycle condition. If we choose b′ other than b such that
β(b′) = β(b) = c, then b′ = ba for some a ∈ A, and

a′s = b′−1s(b′) = a−1b−1s(b)s(a) = a−1ass(a)

is cohomologous to as.
Now we check the exactness:
(1) Exactness at M ′G. This is trivial.
(2) Exactness at MG. By functoriality, β0α0 = 1, thus Imα0 ⊆ Kerβ0. On

the other hand, if β0(b) = 1 and b ∈MG, then β(b) = 1 and b ∈M ′ ∩MG =
M ′G.

(3) Exactness at M ′′G. If c ∈ β0(BG), then c can be lifted to an element
in MG and δ(c) = 1. On the other hand, if δ(c) = 1, then 1 = as = b−1s(b)
for some b ∈ β−1(c) and for all s ∈ G, hence b = s(b) ∈MG.

(4) Exactness at H1(G,M ′). A cocycle as maps to 1 in H1(G,M) is equiv-
alent to say that as = b−1s(b) for some b ∈ M . From the definition of δ, one
then see α1δ = 1. On the other hand, if as = b−1s(b) for every s ∈ G, then
β(b−1s(b)) = β(as) = 1 and β(b) ∈M ′′G and δ(β(b)) = as.

(5) Exactness at H1(G,M). By functoriality, β1α1 = 1, thus Imα1 ⊆
Kerβ1. Now if bs maps to 1 ∈ H1(G,M ′′), then there exists c ∈ M ′′,
c−1β(bs)s(c) = 1. Pick b′ ∈ M such that β(b′) = c, then β(b′−1bss(b′)) = 1
and b′−1bss(b′) = as is a cocycle of M ′. ut

We use the same conventions as in the abelian case: If G is endowed with
the discrete topology, Hn

cont(G,M) is simply written as Hn(G,M). If G is
a profinite group and M is a discrete G-module(i.e., M is endowed with the
discrete topology and G acts continuously on M , Hn

cont(G,M) is again written
as Hn(G,M) and we get cohomology of profinite groups. In particular, if G
is the Galois group of a Galois extension, we get Galois cohomology.
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Let G be a topological group and let H be a closed normal subgroup
of G, then for any topological G-module M , M is naturally regarded as an
H-module and MH a G/H-module. Then naturally we have the restriction
map

res : H1
cont(G,M) −→ H1

cont(H,M).

Given a cocycle as̄ : G/H → MH , for any s ∈ G, just set as = as̄ : G →
MH ⊆M , thus we have the inflation map

Inf : H1
cont(G,M) −→ H1

cont(H,M).

Proposition 0.107 (Inflation-restriction sequence). One has the follow-
ing exact sequence

1 −→ H1
cont(G/H,M

H) Inf−→ H1
cont(G,M) res−→ H1

cont(H,M). (0.41)

Proof. By definition, it is clear that the composition map res ◦ Inf sends any
element in H1

cont(G/H,M
H) to the distinguished element in H1

cont(H,M).
(1) Exactness at H1

cont(G/H,M
H): If as = as̄ is equivalent to the distin-

guished element in H1(G,M), then as = a−1s(a) for some a ∈ M , but for
any t ∈ H, as = ast, thus s(a) = s(t(a)), i.e., a = t(a) and hence a ∈MH , so
as̄ is cohomologous to the trivial cocycle from G/H → AH .

(2) Exactness at H1
cont(G,M): If as : G→M is a cocycle whose restriction

to H is cohomologous to 0, then at = a−1t(a) for some a ∈M and all t ∈ H.
Let a′s = a · ass(a−1), then a′s is cohomologous to as and a′t = 1 for all t ∈ H.
By the cocycle condition, then a′st = a′ss(a

′
t) = a′s if t ∈ H. Thus a′s is constant

on the cosets of H. Again using the cocycle condition, we get a′ts = ta′s for all
t ∈ H, but ts = st′ for some t′ ∈ H, thus a′s = ta′s for all t ∈ H. We therefore
get a cocycle as̄ = a′s : G/H → AH which maps to as. ut

At the end of this section, we recall the following classical result:

Theorem 0.108 (Hilbert’s Theorem 90). Let K be a field and L be a
Galois extension of K (finite or not). Then

(1) H1(L/K,L) = 0;
(2) H1(L/K,L×) = 1;
(3) For all n ≥ 1, H1(L/K,GLn(L)) is trivial.

Proof. It suffices to show the case that L/K is a finite extension. (1) is a
consequence of normal basis theorem: there exists a normal basis of L over
K.

For (2) and (3), we have the following proof which is due to Cartier (cf.
Serre [Ser80], Chap. X, Proposition 3).

Let c be a cocycle. Suppose x is a vector in Kn, we form b(x) =∑
s∈Gal(L/K)

cs(s(x)). Then b(x), x ∈ Kn generates Kn as a K-vector space.

In fact, if u is a linear form which is 0 at all b(x), then for every h ∈ K,
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0 = u(b(hx)) =
∑

cs · u(s(h)s(x)) =
∑

s(h)u(as(s(x))).

Varying h, we get a linear relation of s(h). By Dedekind’s linear independence
theorem of automorphisms, u(ass(x)) = 0, and since as is invertible, u = 0.

By the above fact, suppose x1, · · · , xn are vectors in Kn such that the
yi = b(xi)’s are linear independent over K. Let T be the transformation
matrix from the canonical basis ei of Kn to xi, then the corresponding matrix
of b =

∑
css(T ) sends ei to yi, which is invertible. It is easy to check that

s(b) = c−1
s b, thus the cocycle c is trivial. ut
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`-adic representations of local fields: an
overview

1.1 `-adic Galois representations

1.1.1 Linear representations of topological groups.

Let G be a topological group and E be a field.

Definition 1.1. A linear representation of G with coefficients in E is a finite
dimensional E-vector space V equipped with a linear action of G; equivalently,
a linear representation is a homomorphism

ρ : G −→ AutE(V ) ' GLh(E)

where h = dimE(V ).
If V is endowed with a topological structure, and if the action of G is

continuous, the representation is called continuous. In particular, if E is a
topological vector field, V is given the induced topology, then such a continuous
representation is called a continuous E-linear representations of G.

If moreover, G = Gal(Ks/K) for K a field and Ks a separable closure of
K, such a representation is called a Galois representation.

We consider a few examples:

Example 1.2. Let K be a field, L be a Galois extension of K, G = Gal(L/K)
be the Galois group of this extension. Put the discrete topology on V and
consider continuous representations. The continuity of a representation means
that it factors through a suitable finite Galois extension F of K contained in
L:

G

��

// GLE(V )

Gal(F/K)

88qqqqqqqqqq
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Example 1.3. Assume that E is a completion of a number field. Then either
E = R or C, or E is a finite extension of Q` for a suitable prime number `.

If E = R or C, and ρ : G −→ AutE(V ) is a representation, then ρ is
continuous if and only if Ker (ρ) is an open normal subgroup of G.

If E is a finite extension of Q`, and ρ : G→ AutE(V ) is a representation,
[E : Q`] = d, h = dimE(V ), then dimQ`

(V ) = h d, AutE(V ) ⊂ AutQ`
(V ),

and we can view the representation as a representation over Q`. To give a
continuous E-linear representation of G is the same as to give a continuous
Q`-linear representation of G together with an embedding E ↪→ AutQ`[G](V ).

1.1.2 `-adic representations.

From now on, let K be a field, L be a Galois extension of K, G = Gal(L/K)
be the Galois group of this extension.

Definition 1.4. An `-adic representation of G is a finite dimensional Q`-
vector space equipped with a continuous and linear action of G.

If G = Gal(Ks/K) for Ks a separable closure of K, such a representation
is called an `-adic Galois representation.

Example 1.5. The trivial representation is V = Q` with g(v) = v for all g ∈ G
and v ∈ Q`.

Definition 1.6. Let V be an `-adic representation of G of dimension d. A
lattice in V is a sub Z`-module of finite type generating V as a Q`-vector
space, equivalently, a free sub Z`-module of V of rank d.

Definition 1.7. A Z`-representation of G is a free Z`-module of finite type,
equipped with a linear and continuous action of G.

Let T0 be a lattice of V , then for every g ∈ G, g(T0) = {g(v) | v ∈ T0} is
also a lattice. Moreover, the stabilizer H = {g ∈ G | g(T0) = T0} of T0 is an
open subgroup of G and hence G/H is finite, the sum

T =
∑
g∈G

g(T0)

is a finite sum. T is again a lattice of V , and is stable under G-action, hence
is a Z`-representation of G. If {e1, · · · , ed} is a basis of T over Z`, it is also a
basis of V over Q`, thus

G
ρ //

##GGGGGGGGG GLd(Q`)

GLd(Z`)
?�

OO

and V = Q` ⊗Z`
T .
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On the other hand, given a free Z`-representation T of rank d of G, we get
a d-dimensional `-adic representation

V = Q` ⊗Z`
T, g(λ⊗ t) = λ⊗ g(t), λ ∈ Q`, t ∈ T.

For all n ∈ N, G acts continuously on T/`nT with the discrete topology.
Therefore we have

ρ : G //

ρn %%LLLLLLLLLLL AutZ`
(T )

��

(' GLd(Z`))

Aut(T/`nT ) (' GLd(Z/`nZ))

since T/`nT ' (Z/`nZ)d and T = lim←−
n∈N

T/`nT . The group Hn = Ker (ρn) is a

normal open subgroup of G and Ker (ρ) =
⋂
n∈N

Hn is a closed subgroup.

Assume G = Gal(Ks/K). Then (Ks)Hn = Kn is a finite Galois extension
of K with the following diagram:

G
ρn //

surj.
����

Aut(T/lnT )

Gal(Kn/K)
* 


77oooooooooooo

We also set K∞ =
⋃
Kn, and K∞ = (Ks)H with H = Ker (ρ). So we get a

sequence of field extensions:

K Kn Kn+1 K∞ Ks.

1.1.3 Representations arising from linear algebra.

Through linear algebra, we can build new representations starting from old
representations:

• Suppose V1 and V2 are two `-adic representations of G, then the tensor
product V1 ⊗ V2 = V1 ⊗Q`

V2 with g(v1 ⊗ v2) = gv1 ⊗ gv2 is an `-adic
representation.

• The r-th symmetric power of an `-adic representation V : Symr
Q`
V , with

the natural actions of G, is an `-adic representation.
• The r-th exterior power of an `-adic representation V :

∧r
Q`
V , with the

natural actions of G, is an `-adic representation.
• For V an `-adic representation, V ∗ = LQ`

(V,Q`) with aG-action g·ϕ ∈ V ∗
for ϕ ∈ V ∗, g ∈ G defined by (g · ϕ)(v) = ϕ(g−1 · v), is again an `-adic
representation, which is called the dual representation of V .
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1.1.4 Examples of `-adic Galois representations.

We assume that K is a field, Ks is a fixed separable closure of K, G =
Gal(Ks/K) in this subsection.

(1). The Tate module of the multiplicative group Gm.

Consider the exact sequence

1 −→ µ`n(Ks) −→ (Ks)× a7→a`n

−−−−→ (Ks)× −→ 1,

where for a field F ,
µln(F ) = {a ∈ F | a`

n

= 1}. (1.1)

Then µ`n(Ks) ' Z/`nZ if charK 6= ` and ' {1} if charK = `. If charK 6= `,
the homomorphisms

µ`n+1(Ks)→ µ`n(Ks), a 7→ a`

form an inverse system, thus define the Tate module of the multiplicative group
Gm

T`(Gm) = lim←−
n∈N

µ`n(Ks). (1.2)

T`(Gm) is a free Z`-module of rank 1. Fix an element t = (εn)n∈N ∈ T`(Gm)
such that

ε0 = 1, ε1 6= 1, ε`n+1 = εn.

Then T`(Gm) = Z`t, equipped with the following Z`-action

λ · t =
(
ελn
n

)
n∈N , λn ∈ Z, λ ≡ λn mod `nZ`.

The Galois group G acts on T`(Gm) and also on V`(Gm) = Q` ⊗Z`
T`(Gm).

Usually we write

T`(Gm) = Z`(1), V`(Gm) = Q`(1) = Q` ⊗Z`
Z`(1). (1.3)

If V is any 1-dimensional `-adic representation of G, then

V = Q`e, g(e) = η(g) · e, for all g ∈ G

where η : G → Q×` is a continuous homomorphism. In the case of T`(Gm), η
is called the cyclotomic character and usually denoted as χ, the image Im(χ)
is a closed subgroup of Z×` .

Remark 1.8. If K = Q` or Q, the cyclotomic character χ : G→ Z×` is surjec-
tive.
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From Z`(1) and Q`(1), we define for r ∈ N∗

Q`(r) = Symr
Q`

(Q`(1)) , Q`(−r) = L (Q`(r),Q`) = the dual of Q`(r).
(1.4)

Then for r ∈ Z,

Q`(r) = Q` · tr, with the action g(tr) = χr(g) · tr for g ∈ G.

Correspondingly, we have Z`(r) for r ∈ Z. These representations are called
the Tate twists of Z`. Moreover, for any `-adic representation V , V (r) =
V ⊗Q`

Q`(r) is the Tate twist of V .

(2). The Tate module of an elliptic curve.

Assume charK 6= 2, 3. Let P ∈ K[X], deg(P ) = 3 such that P is separable,
then

P (x) = λ(X − α1)(X − α2)(X − α3)

with the roots α1, α2, α3 ∈ Ks all distinct. Let E be the corresponding elliptic
curve. Then

E(Ks) =
{
(x, y) ∈ (Ks)2 | y2 = P (x)

}
∪ {∞}, where O = {∞}.

The set E(Ks) is an abelian group on which G acts. One has the exact se-
quence

0 −→ E`n(Ks) −→ E(Ks) ×`
n

−→ E(Ks) −→ 0,

where for a field F over K, E`n(F ) = {A ∈ E(F ) | `nA = O}. If ` 6= charK,
then E`n(Ks) ' (Z/`nZ)2. If ` = charK, then either E(Ks)`n ' Z/`nZ in
the ordinary case, or E(Ks)`n ' {0} in the supersingular case.

With the transition maps

E`n+1(Ks) −→ E`n(Ks)
A 7−→ `A

the Tate module of E is defined as

T`(E) = lim←−
n

E`n(Ks). (1.5)

The Tate module T`(E) is a free Z`-module of rank 2 if charK 6= `; and
1 or 0 if charK = `. Set V`(E) = Q` ⊗Z`

T`(E). Then V`(E) is an `-adic
representation of G of dimension 2, 1, 0 respectively.
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(3). The Tate module of an abelian variety.

An abelian variety is a projective smooth variety A equipped with a group
law

A×A −→ A.

Set dim A = g. We have

• A(Ks) is an abelian group;
• A(Ks)`n ' (Z/`nZ)2g if ` 6= charK. If ` = charK, then A(Ks)`n '

(Z/`nZ)r, with 0 ≤ r ≤ g.
We get the `-adic representations:

T`(A) = lim←−A(Ks)ln '

{
Z2g
` , if charK 6= `;

Zr` , if charK = `.

V`(A) = Q` ⊗Z`
T`(A).

(1.6)

(4). `-adic étale cohomology.

Let Y be a proper and smooth variety over Ks (here Ks can be replaced by
a separably closed field). One can define for m ∈ N the cohomology group

Hm(Yét,Z/`nZ).

This is a finite abelian group killed by `n. From the maps

Hm(Yét,Z/`n+1Z) −→ Hm(Yét,Z/`nZ)

we can get the inverse limit lim←−H
m(Yét,Z/`nZ), which is a Z`-module of finite

type. Define
Hm

ét (Y,Q`) = Q` ⊗Z`
lim←−H

m(Yét,Z/`nZ),

then Hm
ét (Y,Q`) is a finite dimensional Q`-vector space.

Let X be a proper and smooth variety over K, and Y = XKs = X⊗Ks =
X×SpecK Spec(Ks). Then Hm

ét (XKs ,Q`) gives rise to an `-adic representation
of G.

For example, if X is an abelian variety of dimension g, then

Hm
ét (XKs ,Q`) =

∧m

Q`

(V`(X))∗.

If X = PdK , then

Hm(PdKs ,Q`) =

{
0, if m is odd or m > 2d;
Q`

(
−m2

)
, if m is even, 0 ≤ m ≤ 2d.

Remark 1.9. This construction extends to more generality and conjecturally
to motives. To any motive M over K, one expects to associate an `-adic
realization of M to it.
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1.2 `-adic representations of finite fields

In this section, let K be a finite field of characteristic p with q elements. Let
Ks be a fixed algebraic closure of K and G = GK = Gal(Ks/K) ' Ẑ be the
Galois group over K. Let Kn be the unique extension of K of degree n inside
Ks for n ≥ 1. Let τK = ϕ−1

K ∈ G be the geometric Frobenius of G.

1.2.1 `-adic Galois representations of finite fields.

Recall the geometric Frobenius τK(x) = xq
−1

for any x ∈ Ks is a topological
generator of G. Then an `-adic representation of G is given by

ρ : G −→ AutQ`
(V )

τK 7−→ u.

For n ∈ Z, it is clear that ρ(τnK) = un. For n ∈ Ẑ,

ρ(τnK) = lim
m∈Z
m7→n

um.

That is, ρ is uniquely determined by u.
Given any u ∈ AutQ`

(V ), there exists a continuous homomorphism ρ :
G 7−→ AutQ`

(V ) such that ρ(τK) = u if and only if the above limit makes
sense.

Proposition 1.10. This is the case if and only if the eigenvalues of u in a
chosen algebraic closure of Q` are `-adic units, i.e. Pu(t) = det(u− t · IdV )(∈
Q`[t] ) is an element of Z`[t] and the constant term is a unit.

Proof. The proof is easy and left to the readers. ut

Definition 1.11. The characteristic polynomial of τK , PV (t) = det(IdV −
tτK) is called the characteristic polynomial of the representation V .

We have PV (t) = (−t)hPV (1/t).

Remark 1.12. V is semi-simple if and only if u = ρ(τK) is semi-simple. Hence,
isomorphism classes of semi-simple `-adic representations V of G are deter-
mined by PV (t).

1.2.2 `-adic geometric representations of finite fields.

Let X be a projective, smooth, and geometrically connected variety over K.
Let Cn = Cn(X) = #X(Kn) ∈ N be the number of Kn-rational points of X.
The zeta function of X is defined by:

ZX(t) = exp

( ∞∑
n=1

Cn
n
tn

)
∈ Z[[t]]. (1.7)
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Let |X| be the underlying topological space of X. If x is a closed point of |X|,
let K(x) be the residue field of x and deg(x) = [K(x) : K]. Then ZX(t) has
an Euler product

ZX(t) =
∏
x∈|X|
x closed

1
1− tdeg(x)

. (1.8)

Theorem 1.13 (Weil’s conjecture, proved by Deligne). Let X be a pro-
jective, smooth, and geometrically connected variety of dimension d over a
finite field K of cardinality q. Then

(1) There exist P0, P1, · · · , P2d ∈ Z[t], Pm(0) = 1, such that

ZX(t) =
P1(t)P3(t) · · ·P2d−1(t)
P0(t)P2(t) · · ·P2d(t)

. (1.9)

(2) There exists a functional equation

ZX

(
1
qdt

)
= ±qdβt2βZX(t) (1.10)

where β =
1
2

2d∑
m=0

(−1)mβm and βm = degPm.

(3) If we make an embedding of the ring of algebraic integers Z ↪→ C, and
decompose

Pm(t) =
βm∏
j=1

(1− αm,jt), αm,j ∈ C.

Then |αm,j | = q
m
2 .

The proof of Weil’s conjecture is why Grothendieck, M. Artin and oth-
ers ([AGV73]) developed the étale theory, although the p-adic proof of the
rationality of the zeta functions is due to Dwork [Dwo60]. One of the key
ingredients of Deligne’s proof ([Del74a, Del80]) is that for ` a prime num-
ber not equal to p, the characteristic polynomial of the `-adic representation
Hm

ét (XKs ,Q`) is
PHm

ét (XKs ,Q`)(t) = Pm(t).

Remark 1.14. Consider `, `′, two different prime numbers not equal to p. De-
note GK = Gal(Ks/K) ' Ẑ. We have the representations

ρ : GK −→ AutQ`
Hm

ét (XKs ,Q`),
ρ′ : GK −→ AutQ′`H

m
ét (XKs ,Q`′).

If Im(ρ) and Im(ρ′) are not finite, then

Im(ρ) ' Z` × ( finite cyclic group),
Im(ρ′) ' Z`′ × ( finite cyclic group ).



1.2 `-adic representations of finite fields 53

Definition 1.15. Let Q be an algebraic closure of Q, and w ∈ Z. A Weil
number of weight w ( relatively to K ) is an element α ∈ Q satisfying

(1) there exists an i ∈ N such that qiα ∈ Z;
(2) for any embedding σ : Q ↪→ C, |σ(α)| = qw/2.

α is said to be effective if α ∈ Z.

Remark 1.16. (1) This is an intrinsic notion.
(2) If i ∈ Z and if α is a Weil number of weight w, then qiα is a Weil

number of weight w + 2i ( so it is effective if i� 0 ).

Definition 1.17. An `-adic representation V of GK is said to be pure of
weight w if all the roots of the characteristic polynomial of the geometric
Frobenius τK acting on V are Weil numbers of weight w. Consider the char-
acteristic polynomial

PV (t) = det(1− τKt) =
m∏
j=1

(1− αjt) ∈ Q`[t], αj ∈ Q` ⊃ Q.

One says that V is effective of weight w if moreover αj ∈ Z for 1 ≤ j ≤ m.

Remark 1.18. (1) Let V be an `-adic representation. If V is pure of weight w,
then V (i) is pure of weight w− 2i. This is because GK acts on Q`(1) through
χ with χ(arithmetic Frobenius)= q, so χ(τK) = q−1. Therefore τK acts on
Q`(i) by multiplication by q−i. If V is pure of weight w and if i ∈ N, i � 0,
then V (−i) is effective.

(2) The Weil Conjecture implies that V = Hm
ét (XKs ,Q`) is pure and ef-

fective of weight m, and PV (t) ∈ Q[t].

Definition 1.19. An `-adic representation V of GK is said to be geometric
if the following conditions holds:

(1) it is semi-simple;
(2) it can be written as a direct sum V =

⊕
w∈Z

Vw, with almost all Vw = 0,

and Vw pure of weight w.

Let RepQ`
(GK) be the category of all `-adic representations of GK , and

RepQ`, geo
(GK) be the full sub-category of geometric representations. This is

a sub-Tannakian category of RepQ`
(GK), i.e. it is stable under subobjects,

quotients, ⊕, ⊗, dual, and Q` is the unit representation as a geometric repre-
sentation.

We denote by RepQ`,GEO(GK) the smallest sub-Tannakian category of
RepQ`

(GK) containing all the objects isomorphic to Hm
ét (XKs ,Q`) for X

projective smooth varieties over K and m ∈ N. This is also the smallest
full sub-category of RepQ`

(GK) containing all the objects isomorphic to
Hm

ét (XKs ,Q`)(i) for all X,m ∈ N, i ∈ Z, stable under sub-objects and quo-
tients.
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Conjecture 1.20. RepQ`, geo
(GK) = RepQ`,GEO(GK).

Theorem 1.21. We have RepQ`, geo
(GK) ⊆ RepQ`,GEO(GK).

The only thing left in Conjecture 1.20 is to prove that Hm
ét (XKs ,Q`) is

geometric. We do know that it is pure of weight w, but it is not known in
general if it is semi-simple.

1.3 `-adic representations of local fields

1.3.1 `-adic representations of local fields.

Let K be a local field. Let k be the residue field of K, which is perfect of
characteristic p > 0. Let OK be the ring of integers of K. Let Ks be a
separable closure of K. Let GK = Gal(Ks/K), IK be the inertia subgroup of
GK , and PK be the wild inertia subgroup of GK .

We have the following exact sequences

1 −→ IK −→ GK −→ Gk −→ 1,

1 −→ PK −→ GK −→ GK/PK −→ 1.

Let ` be a fixed prime number, ` 6= p. Then there is the following isomorphism

IK/PK ' Ẑ′(1) =
∏
` 6=p

Z`(1) = Z`(1)×
∏
`′ 6=`,p

Z`′(1).

We define PK, ` to be the inverse image of
∏
`′ 6=p,` Z`′(1) in IK , and define

GK,` the quotient group to make the short exact sequences

1 −→ PK,` −→ GK −→ GK, ` −→ 1,

1 −→ Z`(1) −→ GK, ` −→ Gk −→ 1.

Let V be an `-adic representation of GK , and T be the corresponding Z`-
lattice stable under GK . Hence we have

GK
ρ //

%%JJJJJJJJJJ AutZ`
(T )� _

��

' GLh(Z`)

AutQ`
(V ) ' GLh(Q`)

where h = dimQ`
(V ). The image ρ(GK) is a closed subgroup of AutZ`

(T ).
Consider the following diagram

1 −→ N1 −→ GLh(Z`) −→ GLh(F`) −→ 1,
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where N1 is the kernel of the reduction map. Let Nn be the set of matrices
congruent to 1 mod `n for n ≥ 1. As N1/Nn is a finite group of order equal
to a power of ` for each n, N1 ' lim←−N1/Nn is a pro-` group. Since PK,` is
the inverse limit of finite groups of orders prime to `, ρ(PK,`) ∩ N1 = {1}.
Consider the exact sequence

1 −→ PK −→ PK,` −→
∏

`′ 6=p, `

Z`′(1) −→ 1,

as ρ(PK, `) injects into GLh(F`), ρ(PK, `) is a finite group.

Definition 1.22. Let V be an `-adic representation of GK with ρ : GK −→
AutQ`

(V ).
(1) We say that V is unramified or has good reduction if IK acts trivially.
(2) We say that V has potentially good reduction if ρ(IK) is finite, in

other words, if there exists a finite extension K ′ of K contained in Ks such
that V , as an `-adic representation of GK′ = Gal(Ks/K ′), has good reduction.

(3) We say that V is semi-stable if IK acts unipotently, in other words, if
the semi-simplification of V has good reduction.

(4) We say that V is potentially semi-stable if there exists a finite exten-
sion K ′ of K contained in Ks such that V is semi-stable as a representation
of GK′ .

Remark 1.23. Notice that (4) is equivalent to the condition that there exists
an open subgroup of IK which acts unipotently, or that the semi-simplification
has potentially good reduction.

Theorem 1.24. Assume that the group µ`∞(K(µ`)) = {ε ∈ K(µ`) | ∃ n such
that ε`

n

= 1} is finite. Then any `-adic representation of GK is potentially
semi-stable. As µ`∞(k) ' µ`∞(K), this is the case if k is finite.

Proof. Replacing K by a suitable finite extension we may assume that PK, `
acts trivially, then ρ factors through GK,`:

GK

""EE
EE

EE
EE

AutQ`
(V )//ρ

::

ρ̄uuuuuuuuuu

GK, `

Consider the sequence

1 −→ Z`(1) −→ GK, ` −→ Gk −→ 1.

Let t be a topological generator of Z`(1). So ρ̄(t) ∈ AutQ`
(V ). Choose a finite

extension E of Q` such that the characteristic polynomial of ρ̄(t) is a product
of polynomials of degree 1. Let V ′ = E⊗Q`

V . The group GK, ` acts on E⊗Q`
V

by
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g(λ⊗ v) = λ⊗ g(v).

Let ρ̄ : GK, ` −→ AutE(V ′) be the representation over E, let a be an eigenvalue
of ρ̄(t). Then there exists v ∈ V ′, v 6= 0 such that ρ̄(t)(v) = a · v.

If g ∈ GK, `, then gtg−1 = tχ`(g), where χ` : GK, ` −→ Z∗` is a character.
Then

ρ̄(gtg−1)(v) = ρ̄
(
tχ`(g)

)
(v) = aχ`(g)v.

Therefore

ρ̄(t)(g−1(v)) = t(g−1v) = (tg−1)(v) = g−1(aχ`(g)v) = aχ`(g)g−1v.

This implies, if a is an eigenvalue of ρ̄(t), then for all n ∈ Z such that there
exists g ∈ GK, ` with χ`(g) = n, an is also an eigenvalue of ρ̄(t). The condition
µ`∞(K(µ`)) is finite⇐⇒ Im(χ`) is open in Z∗` . Thus there are infinitely many
such n’s. This implies a is a root of 1. Therefore there exists an N ≥ 1 such
that tN acts unipotently. The closure of the subgroup generated by tN acts
unipotently and is an open subgroup of Z`(1). Since IK � Z`(1) is surjective,
the theorem now follows. ut

Corollary 1.25 (Grothendieck’s `-adic monodromy Theorem). Let K
be a local field. Then any `-adic representation of GK coming from algebraic
geometry (eg. V`(A), Hm

ét (XKs ,Q`)(i), · · · ) is potentially semi-stable.

Proof. Let X be a projective and smooth variety over K. Then we can get
a field K0 which is of finite type over the prime field of K ( joined by the
coefficients of the defining equations of X). Let K1 be the closure of K0 in
K. Then K1 is a complete discrete valuation field whose residue field k1 is of
finite type over Fp. Let k2 be the radical closure of k1, and K2 be a complete
separable field contained in K and containing K0, whose residue field is k2.
Then µ`∞(k2) = µ`∞(k1), which is finite. Then

X = X0 ×K0 K, X2 = X0 ×K0 K2, X = X2 ×K2 K,

where X0 is defined over K0. The action of GK on V comes from the action
of GK2 , hence the corollary follows from the theorem. ut

Theorem 1.26. Assume k is algebraically closed. Then any potentially semi-
stable `-adic representation of GK comes from algebraic geometry.

Proof. We proceed the proof in two steps. First note that k is algebraically
closed implies IK = GK .

Step 1. At first, we assume that the Galois representation is semi-stable. Then
the action of PK, ` must be trivial from above discussions, hence the repre-
sentation factors through GK, `. Identify GK, ` with Z`(1), and let t be a
topological generator of this group. Let V be such a representation:
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GK

""EE
EE

EE
EE

AutQ`
(V )//ρ

::

ρ̄uuuuuuuuuu

GK, `

so ρ̄(t) ∈ AutQ`
(V ).

For each integer n ≥ 1, there exists a unique (up to isomorphism) repre-
sentation Vn of dimension n which is semi-stable and in-decomposable. Write
it as Vn = Qn

` , and we can assume

ρ̄(t) =


1 1

. . . . . .
. . . 1

1

 .

As Vn ' Symn−1
Q`

(V2), it is enough to prove that V2 comes from algebraic
geometry. Write

0 −→ Q` −→ V2 −→ Q` −→ 0,

where V2 is a non-trivial extension. It is enough to produce a non-trivial
extension of two `-adic representations of dimension 1 coming from algebraic
geometry. We apply the case for some q ∈ mK , q 6= 0. Then from Tate’s
theorem, let E be an elliptic curve over K such that E(Ks) ' (Ks)∗/qZ, with

E(Ks)`n =
{
a ∈ (Ks)∗ | ∃m ∈ Z such that a`

n

= qm
}/

q`
n

and
V`(E) = Q` ⊗Z`

T`(E), T`(E) = lim←−E(Ks)`n .

An element α ∈ T`(E) is given by

α = (αn)n∈N, αn ∈ E(Ks)ln , α`n+1 = αn.

From the exact sequence

0 −→ µ`n(K) −→ E(Ks)`n −→ Z/`nZ −→ 0

we have
0 −→ Q`(1) −→ V`(E) −→ Q` −→ 0.

The action of GK on the left Q`(1) of the above exact sequence is trivial, since
it comes from the action of unramified extensions. And the extension V`(E)
is non-trivial.

Step 2. Assume the representation is potentially semi-stable. Let V be a po-
tentially semi-stable `-adic representation of GK . Then there exists a finite
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extension K ′ of K contained in Ks such that IK′ = GK′ acts unipotently on
V .

Let q be a uniformizing parameter of K ′. Let E be the Tate elliptic curve
associated to q defined over K ′, and let V`(E) be the semi-stable Galois rep-
resentation of GK′ . From the Weil scalar restriction of E, we get an abelian
variety A over K and

V`(A) = IndGK

GK′
V`(E).

an `-adic representation of GK of dimension 2 · [K ′ : K]. All the `-adic repre-
sentations of GK , which are semi-stable `-adic representations of GK′ , come
from V`(A). ut

1.3.2 An alternative description of potentially semi-stable `-adic
representations.

Let the notations be as in the previous subsection. To any q ∈ mK , q 6= 0, let
E be the corresponding Tate elliptic curve. Thus

V`(E) = V`
(
(Ks)∗

/
qZ) = Q` ⊗ lim←−

(
(Ks)∗

/
qZ)

`n
.

Let t be a generator of Q`(1). Then we have the short exact sequence

0 −→ Q` −→ V`
(
(Ks)∗

/
qZ) (−1) −→ Q`(−1) −→ 0.

Write Q`(−1) = Q` · t−1, and let u ∈ V`
(
(Ks)∗

/
qZ) (−1) be a lifting of t−1.

Put
B` = Q`[u],

then b⊗ t−1 ∈ B`(−1) = B` ⊗Q`
Q`(−1). We define the following map

N : B` −→ B`(−1)
b 7−→ −b′ ⊗ t−1 = − db

du ⊗ t
−1.

Let V be an `-adic representation of GK , and H be the set of open normal
subgroups of IK . Define

D`(V ) = lim−→
H∈H

(B` ⊗Q`
V )H . (1.11)

Proposition 1.27. dimQ`
D`(V ) ≤ dimQ`

V .

The map N extends to N : D`(V ) −→ D`(V )(−1). And we define a
category C = the category of pairs (D,N), in which

• D is an `-adic representation of GK with potentially good reduction.
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• N : D −→ D(−1) is a Q`-linear map commuting with the action of GK ,
and is nilpotent. Here nilpotent means the following: write N(δ) = Nt(δ)⊗
t−1, where Nt : D −→ D, then that Nt (or N) is nilpotent means that the
composition of the maps

D
N−→ D(−1)

N(−1)−−−−→ D(−2) −→ · · · N(−r+1)−−−−−−→ D(−r)

is zero for r large enough. The smallest such r is called the length of D.
• HomC ((D,N), (D′, N ′)) is the set of the maps η : D −→ D′ where η is

Q`-linear, commutes with the action of GK , and the diagram

D
η //

N

��

D′

N ′

��
D(−1)

η(−1)
// D′(−1)

commutes.

We may view D` as a functor from the category of `-adic representations
of GK to the category C . There is a functor in the other direction

V` : C −→ RepQ`
(GK).

Suppose the Galois group GK acts diagonally on B` ⊗Q`
D. Since

(B`⊗Q`
D)(−1) = (B`⊗Q`

D)⊗Q`
Q`(−1) = B`(−1)⊗Q`

D = B`⊗Q`
D(−1),

define the map N : B` ⊗Q`
D → (B` ⊗Q`

D)(−1) by

N(b⊗ δ) = Nb⊗ δ + b⊗Nδ.

Now set

V`(D,N) = Ker (N : B` ⊗Q`
D −→ (B` ⊗Q`

D)(−1)) .

Proposition 1.28. (1) If V is any `-adic representation of GK , then

V` (D`(V )) ↪→ V

is injective and is an isomorphism if and only if V is potentially semi-stable.
(2) V`(D,N) is stable by GK and dimQ`

V`(D,N) = dimQ`
(D) and

V`(D,N) is potentially semi-stable.
(3) D` induces an equivalence of categories between RepQ`,pst(GK), the

category of potentially semi-stable `-adic representations of GK and the cate-
gory C , and V` is the quasi-inverse functor of D`.
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Proof. (1) is a consequence of a more general result (Theorem 2.13) in the next
chapter. One needs to check that B` is so-called (Q`,H)-regular for H ∈ H:
(i) whether BH` = (FracB`)H? (ii) for a non-zero element b such that the
Q`-line generated by b is stable by H, whether b is invertible in B`? This is
easy to check: (i) BH` = (FracB`)H = Q`. (ii) b ∈ Q` is invertible.

(2) is proved by induction to the length of D. If the length is 0, then
ND = 0 and V`(D,N) = BN=0

` ⊗D = D, and the result is evident. We also
know that N is surjective on B`⊗D. In general, suppose D is of length r+1.
Let D1 = Ker (N : D → D(−1)) and D2 = Im(N : D → D(−1), and endow
D1 and D2 with the induced nilpotent map N . Then both of them are objects
in C , D1 is of length 0 and D2 is of length r. The exact sequence

0 −→ D1 −→ D −→ D2 −→ 0

induces a commutative diagram

0 −−−−→ B` ⊗D1 −−−−→ B` ⊗D −−−−→ B` ⊗D2 −−−−→ 0

N

y N

y N

y
0 −−−−→ B` ⊗D1(−1) −−−−→ B` ⊗D(−1) −−−−→ B` ⊗D2(−1) −−−−→ 0

and since N is surjective on B` ⊗D, by the snake lemma, we have an exact
sequence of Q`-vector spaces

0 −→ V`(D1, N) −→ V`(D,N) −→ V`(D2, N) −→ 0

which is compatible with the action of G. By induction, the result follows.
(3) follows from (1) and (2). ut

Exercise 1.29. Let (D,N) be an object of C . The map

V`(D) ⊂ B` ⊗Q`
D −→ D∑

i Pi(u)⊗ δi 7−→
∑
i Pi(0)⊗ δi

induces an isomorphism of Q`-vector spaces between V`(D) and D ( but it
does not commute with the action of GK ). Describe the new action of GK
on D using the old action and N .

1.3.3 The case of a finite residue field.

Assume k is a finite field with q elements. We have the short exact sequence

1 −→ IK −→ GK −→ Gk −→ 1,

and let τk ∈ Gk denote the geometric Frobenius of k. By definition, the Weil
group of k is

WK = {g ∈ GK | ∃m ∈ Z such that g|k̄ = τmk } .
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Hence there is a map
a : WK −→ Z

with a(g) = m if g|k̄ = τmk , and it induces the exact sequence

1 −→ IK −→WK
a−→ Z −→ 1.

Definition 1.30. The Weil-Deligne group of K (relative to K/K), denoted
as WDK , is the group scheme over Q which is the semi-direct product of WK

by the additive group Ga, over which WK acts by

wxw−1 = q−a(w)x.

Definition 1.31. If E is any field of characteristic 0, a (finite dimensional)
representation of WK (a Weil representation) of K over E is a finite dimen-
sional E-vector space D equipped with

(1) a homomorphism of groups ρ : WK −→ AutE(D) whose kernel contains
an open subgroup of IK .

A representation of WDK (a Weil-Deligne representation) is a Weil repre-
sentation equipped with

(2) a nilpotent endomorphism N of D such that

N ◦ ρ(w) = qa(w)ρ(w) ◦N for any w ∈WK .

Any `-adic representation V of GK which has potentially good reduction
defines a continuous Q`-linear representation of WK . As WK is dense in GK ,
the action of WK determines the action of GK .

For an E-vector space D with an action of WK , we can define D(−1) =
D⊗EE(−1), where E(−1) is a one-dimensional E-vector space on which WK

acts, such that IK acts trivially and the action of τk is multiplication by q−1.
Then an object of RepE(WDK) is a pair (D,N) where D is an E-linear
continuous representation of WK and N : D −→ D(−1) is a morphism of
E-linear representation of WK (which implies that N is nilpotent ).

Let RepQ`, pst(GK) be the category of potentially semi-stable `-adic rep-
resentation of GK . By results from previous subsection, we have the functor

RepQ`, pst(GK) −→ RepE(WDK)
V 7−→ (D`(V ), N),

which is fully faithful.
Now consider E and F , which are two fields of characteristic 0 (for instance,

E = Q`, and F = Q`′). Let

– D = an E-linear representation of WDK .
– D′ = an F -linear representation of WDK .
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D and D′ are said to be compatible if for any field Ω and embeddings

E ↪→ Ω and F ↪→ Ω,

Ω ⊗E D ' Ω ⊗F D′ are isomorphic as Ω-linear representations of WDK .

Theorem 1.32. Assume that A is an abelian variety over K. If ` and `′ are
different prime numbers not equal to p, then V`(A) and V`′(A) are compatible.

Conjecture 1.33. Let X be a projective and smooth variety over K. For any
m ∈ N, if `, `′ are primes not equal to p, then

Hm
ét (XKs ,Q`) and Hm

ét (XKs ,Q`′)

are compatible.

Remark 1.34. If X has good reduction, it is known that the two representa-
tions are unramified with the same characteristic polynomials of Frobenius by
Weil’s conjecture. It is expected that τk acts semi-simply, which would imply
the conjecture in this case.

1.3.4 Geometric `-adic representations of GK .

In this subsection we shall describe geometric E-linear representations of
WDK for any field E of characteristic 0. Then a geometric `-adic represen-
tation of GK for ` 6= p is an `-adic representation such that the associated
Q`-linear representation of WDK is geometric.

Let V be an E-linear continuous representation of WK . Choose τ ∈WK a
lifting of τk:

1 −→ IK −→ WK −→ Z −→ 1
τ 7−→ 1.

Choose w ∈ Z.

Definition 1.35. The representation V is pure of weight w if all the roots of
the characteristic polynomial of τ acting on V ( in a chosen algebraic closure
E of E ) are Weil numbers of weight w relative to k, i.e. for any root λ, λ ∈ Q
and for any embedding σ : Q −→ E, we have

| σ(λ) |= qw/2.

The definition is independent of the choices of τ and E.
Let V be any E-linear continuous representation of WK , and let r ∈ N.

Set
D = V ⊕ V (−1)⊕ V (−2)⊕ · · · ⊕ V (−r)

and N : D −→ D(−1) given by

N(v0, v−1, v−2, · · · , v−r) = (v−1, v−2, · · · , v−r, 0).

This is a representation of WDK .
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Definition 1.36. An E-linear representation of WDK is elementary and
pure of weight w + r if it is isomorphic to such a D with V satisfying

(1) V is pure of weight w;
(2) V is semi-simple.

Definition 1.37. Let m ∈ Z. A geometric representation of WDK pure of
weightm is a representation which is isomorphic to a direct sum of elementary
and pure representation of weight m.

As a full sub-category of RepE(WDK), these representations make an
abelian category RepmE, geo(WDK). For ` 6= p, let

RepmQ`, geo
(GK)

be the category of pure geometric `-adic representation of GK of weight m,
which is the category of those V such that (D`(V ), N) is in RepmQ`, geo

(WDK).

Conjecture 1.38. For ` 6= p, the `-adic representation Hr
ét(XKs ,Q`)(i) should

be an object of Repr−2i
Q`, geo

(WDK) and objects of this form should generate
the category.

In the category RepE(WDK), let

Definition 1.39. The category of weighted E-linear representation of WDK ,
denoted as RepwE(WDK), is the category with

• An object is an E-linear representation D of WDK equipped an increasing
filtration

· · · ⊆WmD ⊆Wm+1D ⊆ · · ·
where WmD is stable under WDK , and

WmD = D if m� 0,
WmD = 0 if m� 0.

• Morphisms are morphisms of the representations of WDK which respect
the filtration.

This is an additive category, but not an abelian category. Define

RepwE, geo(WDK),

the category of geometric weighted E-linear representations of WDK , to be
the full sub-category of RepE(WDK) of those D′s such that for all m ∈ Z,

grmD = WmD/Wm−1D

is a pure geometric representation of weight m.

Theorem 1.40. RepwE, geo(WDK) is an abelian category.

It is expected that if M is a mixed motive over K, for any ` prime number
6= p, H`(M) should be an object of RepwQ`, geo

(GK).





2

p-adic Representations of fields of
characteristic p

2.1 B-representations and regular G-rings

2.1.1 B-representations.

Let G be a topological group and B be a topological commutative ring
equipped with a continuous action of G compatible with the structure of
ring, that is, for all g ∈ G, b1, b2 ∈ B

g(b1 + b2) = g(b1) + g(b2), g(b1b2) = g(b1)g(b2).

Example 2.1. B = L is a Galois extension of a field K, G = Gal(L/K), both
endowed with the discrete topology.

Definition 2.2. A B-representation X of G is a B-module of finite type
equipped with a semi-linear and continuous action of G, where semi-linear
means that for all g ∈ G, λ ∈ B, and x, x1, x2 ∈ X,

g(x1 + x2) = g(x1) + g(x2), g(λx) = g(λ)g(x).

For a B-representation, if G acts trivially on B, it is just a linear represen-
tation; if B = Fp endowed with the discrete topology, it is called a mod p rep-
resentation instead of a Fp-representation; if B = Qp endowed with the p-adic
topology, it is called a p-adic representation instead of a Qp-representation.

Definition 2.3. A free B-representation of G is a B-representation such that
the underlying B-module is free.

Example 2.4. Let F be a closed subfield of BG and V be a F -representation
of G, let X = B ⊗F V be equipped with G-action by g(λ⊗ x) = g(λ)⊗ g(x),
where g ∈ G,λ ∈ B, x ∈ X, then X is a free B-representation.

Definition 2.5. We say that a free B-representation X of G is trivial if one
of the following two conditions holds:

(1) There exists a basis of X consisting of elements of XG;
(2) X ' Bd with the natural action of G.
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We now give the classification of free B-representations of G of rank d for
d ∈ N and d ≥ 1.

Assume that X is a free B-representation of G with {e1, · · · , ed} as a basis.
For every g ∈ G, let

g(ej) =
d∑
i=1

aij(g)ei,

then we get a map α : G→ GLd(B),

α(g) = (aij(g))1≤i,j≤d. (2.1)

It is easy to check that α is a 1-cocycle in Z1
cont(G,GLd(B)). Moreover, if

{e′1, · · · , e′d} is another basis and if P is the change of basis matrix, write

g(e′j) =
d∑
i=1

a′ij(g)e
′
i, α′(g) = (a′ij(g))1≤i,j≤d,

then we have
α′(g) = P−1α(g)g(P ). (2.2)

Therefore α and α′ are cohomologous to each other. Hence the class of α in
H1

cont(G,GLd(B)) is independent of the choice of the basis of X and we denote
it by [X].

Conversely, given a 1-cocycle α ∈ Z1
cont(G,GLd(B)), there is a unique

semi-linear action of G on X = Bd such that, for every g ∈ G,

g(ej) =
d∑
i=1

aij(g)ei, (2.3)

and [X] is the class of α. Hence, we have the following proposition:

Proposition 2.6. Let d ∈ N. The correspondence X 7→ [X] defines a bijec-
tion between the set of equivalence classes of free B-representations of G of
rank d and H1

cont(G,GLd(B)). Moreover X is trivial if and only if [X] is the
distinguished point in H1

cont(G,GLd(B)).

The following proposition is thus a direct result of Hilbert’s Theorem 90:

Proposition 2.7. If L is a Galois extension of K and if L is equipped with
the discrete topology, then any L-representation of Gal(L/K) is trivial.

2.1.2 Regular (F,G)-rings.

In this subsection, we let B be a topological ring, G be a topological group
which acts continuously on B. Set E = BG, and assume it is a field. Let F be
a closed subfield of E.

If B is a domain, then the action of G extends to C = FracB by

g

(
b1
b2

)
=
g(b1)
g(b2)

, for all g ∈ G, b1, b2 ∈ B. (2.4)
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Definition 2.8. We say that B is (F,G)-regular if the following conditions
hold:

(1) B is a domain.
(2) BG = CG.
(3) For every b ∈ B, b 6= 0 such that for any g ∈ G, if there exists λ ∈ F

with g(b) = λb, then b is invertible in B.

Remark 2.9. This is always the case when B is a field.

Let RepF (G) denote the category of continuous F -representations of G.
This is an abelian category with additional structures:

• Tensor product: if V1 and V2 are F -representations of G, we set V1⊗V2 =
V1 ⊗F V2, with the G-action given by g(v1 ⊗ v2) = g(v1)⊗ g(v2);

• Dual representation: if V is a F -representation of G, we set V ∗ =
L (V, F ) = {linear maps V → F}, with the G-action given by (gf)(v) =
f(g−1(v));

• Unit representation: this is F with the trivial action.

We have obvious natural isomorphisms

V1 ⊗ (V2 ⊗ V3) ' (V1 ⊗ V2)⊗ V3, V2 ⊗ V1 ' V1 ⊗ V2, V ⊗ F ' F ⊗ V ' V.

With these additional structures, RepF (G) is a neutral Tannakian cate-
gory over F (ref. e.g. Deligne [Del] in the Grothendieck Festschrift, but we
are not going to use the precise definition of Tannakian categories).

Definition 2.10. A category C ′ is a strictly full sub-category of a category
C if it is a full sub-category such that if X is an object of C isomorphic to an
object of C ′, then X ∈ C ′.

Definition 2.11. A sub-Tannakian category of RepF (G) is a strictly full
sub-category C , such that

(1) The unit representation F is an object of C ;
(2) If V ∈ C and V ′ is a sub-representation of V , then V ′ and V/V ′ are

all in C ;
(3) If V is an object of C , so is V ∗;
(4) If V1, V2 ∈ C , so is V1 ⊕ V2;
(5) If V1, V2 ∈ C , so is V1 ⊗ V2.

Definition 2.12. Let V be a F -representation of G. We say V is B-admissible
if B ⊗F V is a trivial B-representation of G.

Let V be any F -representation of G, then B ⊗F V , equipped with the
G-action by g(λ⊗ x) = g(λ)⊗ g(x), is a free B-representation of G. Let

DB(V ) := (B ⊗F V )G, (2.5)

we get a map
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αV : B ⊗E DB(V ) −→ B ⊗F V
λ⊗ x 7−→ λx

(2.6)

for λ ∈ B, x ∈ DB(V ). αV is B-linear and commutes with the action of G,
where G acts on B ⊗E DB(V ) via g(λ⊗ x) = g(λ)⊗ x.

Theorem 2.13. Assume that B is (F,G)-regular. Then
(1) For any F -representation V of G, the map αV is injective and

dimE DB(V ) ≤ dimF V . We have

dimE DB(V ) = dimF V ⇔ αV is an isomorphism
⇔ V is B-admissible.

(2.7)

(2) Let RepBF (G) be the full subcategory of RepF (G) consisting of these
representations V which are B-admissible. Then RepBF (G) is a sub-Tannakian
category of RepF (G) and the restriction of DB (regarded as a functor from
the category RepF (G) to the category of E-vector spaces) to RepBF (G) is an
exact and faithful tensor functor, i.e., it satisfies the following three properties:

(i) Given V1 and V2 admissible, there is a natural isomorphism

DB(V1)⊗E DB(V2) ' DB(V1 ⊗ V2). (2.8)

(ii) Given V admissible, there is a natural isomorphism

DB(V ∗) ' (DB(V ))∗. (2.9)

(iii) DB(F ) ' E.

Proof. (1) Let C = FracB. Since B is (F,G)-regular, CG = BG = E. We
have the following commutative diagram:

B ⊗E DB(V ) //
� _

��

B ⊗F V� _

��

B ⊗E DC(V )� _

��
C ⊗E DC(V ) // C ⊗F V.

To prove the injectivity of αV , we are reduced to show the case when B = C
is a field. The injectivity of αV means that given h ≥ 1, x1, ..., xh ∈ DB(V )
linearly independent over E, then they are linearly independent over B. We
prove it by induction on h.

The case h = 1 is trivial. We may assume h ≥ 2. Assume that x1, · · · , xh
are linearly independent over E, but not over B. Then there exist λ1, · · · , λh ∈

B, not all zero, such that
h∑
i=1

λixi = 0. By induction, the λ′is are all different
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from 0. Multiplying them by −1/λh, we may assume λh = −1, then we get

xh =
h−1∑
i=1

λixi. For any g ∈ G,

xh = g(xh) =
h−1∑
i=1

g(λi)xi,

then
h−1∑
i=1

(g(λi)− λi)xi = 0.

By induction, g(λi) = λi, for 1 ≤ i ≤ h − 1, i.e., λi ∈ BG = E, which is a
contradiction. This finishes the proof that αV is injective.

If αV is an isomorphism, then

dimE DB(V ) = dimF V = rankB B ⊗F V.

We have to prove that if dimE DB(V ) = dimF V , then αV is an isomorphism.
Suppose {v1, · · · , vd} is a basis of V over F , set v′i = 1⊗vi, then v′1, · · · , v′d

is a basis of B ⊗F V over B. Let {e1, · · · , ed} be a basis of DB(V ) over E.

Then ej =
d∑
i=1

bijvi, for (bij) ∈Md(B). Let b = det(bij), the injectivity of αV

implies b 6= 0.
We need to prove b is invertible in B. Denote detV =

∧d
F V = Fv, where

v = v1 ∧ · · · ∧ vd. We have g(v) = η(g)v with η : G → F×. Similarly let
e = e1 ∧ · · · ∧ ed ∈

∧d
E DB(V ), g(e) = e for g ∈ G. We have e = bv, and

e = g(e) = g(b)η(g)v, so g(b) = η(g)−1b for all g ∈ G, hence b is invertible in
B since B is (F,G)-regular.

The second equivalence is easy. The condition that V is B-admissible, is
nothing but that there exists a B-basis {x1, · · · , xd} of B⊗F V such that each
xi ∈ DB(V ). Since αV (1⊗xi) = xi, and αV is always injective, the condition
is equivalent to that αV is an isomorphism.

(2) Let V be a B-admissible F -representation of G, V ′ be a sub-F -vector
space stable under G, set V ′′ = V/V ′, then we have exact sequences

0→ V ′ → V → V ′′ → 0

and
0→ B ⊗F V ′ → B ⊗F V → B ⊗F V ′′ → 0.

Then we have a sequence

0→ DB(V ′)→ DB(V )→ DB(V ′′) 99K 0 (2.10)

which is exact at DB(V ′) and at DB(V ). Let d = dimF V , d′ = dimF V
′,

d′′ = dimF V
′′, by (1), we have
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dimE DB(V ) = d, dimE DB(V ′) ≤ d′, dimE DB(V ′′) ≤ d′′,

but d = d′+d′′, so we have equality everywhere, and (2.10) is exact at DB(V ′′)
too. Then the functor DB restricted to RepBF (G) is exact, and is also faithful
because DB(V ) 6= 0 if V 6= 0.

Now we prove the second part of the assertion (2). (iii) is trivial. For (i),
we have a commutative diagram

(B ⊗F V1)⊗B (B ⊗F V2)
Σ

B ⊗F (V1 ⊗F V2)

DB(V1)⊗E DB(V2)
?�

OO

σ // DB(V1 ⊗F V2)

OO

where the map σ is induced by Σ. From the diagram σ is clearly injective.
On the other hand, since V1 and V2 are admissible, then

dimE DB(V1)⊗E DB(V2) = dimB(B ⊗F (V1 ⊗F V2)) ≥ dimE DB(V1 ⊗F V2),

hence σ is in fact an isomorphism.
At last for (ii), assume V is B-admissible, we need to prove that V ∗ is

B-admissible and DB(V ∗) ' DB(V )∗.
The case dimF V = 1 is easy, since in this case V = Fv, DB(V ) = E ·b⊗v,

and V ∗ = Fv∗, DB(V ∗) = E · b−1 ⊗ v∗.
If dimF V = d ≥ 2, we use the isomorphism

(
∧d−1

F
V )⊗ (detV )∗ ' V ∗.

∧d−1
F V is admissible since it is just a quotient of

⊗d−1
F V , and (detV )∗ is

also admissible since dim detV = 1, so V ∗ is admissible.
To show the isomorphism DB(V ∗) ' DB(V )∗, we have a commutative

diagram
B ⊗F V ∗

' // (B ⊗F V )∗

DB(V ∗)
?�

OO

τ // DB(V )∗

OO

where the top isomorphism follows by the admissibility of V ∗. Suppose f ∈
DB(V ∗) and t ∈ B ⊗F V , then for g ∈ G, g ◦ f(t) = g(f(g−1(t))) = f(t). If
moreover t ∈ DB(V ), then g(f(t)) = f(t) and hence f(t) ∈ E. Therefore we
get the induced homomorphism τ . From the diagram τ is clearly injective, and
since both DB(V ) and DB(V ∗) have the same dimension as E-vector spaces,
τ must be an isomorphism. ut
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2.2 Mod p Galois representations of fields of
characteristic p > 0

In this section, we assume that E is a field of characteristic p > 0. We choose
a separable closure Es of E and set G = GE = Gal(Es/E). Set σ = (λ 7→ λp)
to be the absolute Frobenius of E.

2.2.1 Étale ϕ-modules over E.

Definition 2.14. A ϕ-module over E is an E-vector space M together with
a map ϕ : M →M which is semi-linear with respect to the absolute Frobenius
σ, i.e.,

ϕ(x+ y) = ϕ(x) + ϕ(y), for all x, y ∈M ; (2.11)

ϕ(λx) = σ(λ)ϕ(x) = λpϕ(x), for all λ ∈ E, x ∈M. (2.12)

If M is an E-vector space, let Mϕ = E σ⊗E M , where E is viewed as an
E-module by the Frobenius σ : E → E, which means for λ, µ ∈ E and x ∈M ,

λ(µ⊗ x) = λµ⊗ x, λ⊗ µx = µpλ⊗ x.

Mϕ is an E-vector space, and if {e1, · · · , ed} is a basis of M over E, then
{1⊗ e1, · · · , 1⊗ ed} is a basis of Mϕ over E. Hence we have

dimEMϕ = dimEM.

Our main observation is

Remark 2.15. If M is any E-vector space, giving a semi-linear map ϕ : M →
M is equivalent to giving a linear map

Φ : Mϕ −→ M
λ⊗ x 7−→ λϕ(x). (2.13)

Definition 2.16. A ϕ-module M over E is étale if Φ : Mϕ → M is an
isomorphism and if dimEM is finite.

Let {e1, · · · , ed} be a basis of M over E, and assume

ϕej =
d∑
i=1

aijei,

then Φ(1⊗ ej) =
∑d
i=1 aijei. Hence

M is étale ⇐⇒ Φ is an isomorphism⇐⇒ Φ is injective
⇐⇒ Φ is surjective ⇐⇒M = E · ϕ(M)
⇐⇒ A = (aij) is invertible in E.

(2.14)

Let M ét
ϕ (E) be the category of étale ϕ-modules over E with the morphisms

being the E-linear maps which commute with ϕ.
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Proposition 2.17. The category M ét
ϕ (E) is an abelian category.

Proof. Let E[ϕ] be the non-commutative (if E 6= Fp) ring generated by E and
an element ϕ with the relation ϕλ = λpϕ, for every λ ∈ E. The category of
ϕ-modules over E is nothing but the category of left E[ϕ]-modules. This is
an abelian category. To prove the proposition, it is enough to check that, if
η : M1 → M2 is a morphism of étale ϕ-modules over E, the kernel M ′ and
the cokernel M ′′ of η in the category of ϕ-modules over E are étale.

In fact, the horizontal lines of the commutative diagram

0 // M ′ϕ //

Φ′

��

(M1)ϕ //

Φ1

��

(M2)ϕ //

Φ2

��

(M ′′)ϕ //

Φ′′

��

0

0 // M ′ // M1
// M2

// M ′′ // 0

are exact. By definition, Φ1 and Φ2 are isomorphisms, so Φ′ is injective and Φ′′

is surjective. By comparing the dimensions, both Φ′ and Φ′′ are isomorphisms,
hence Ker η and Coker η are étale. ut

The category M ét
ϕ (E) possesses the following Tannakian structure:

• Let M1, M2 be two étale ϕ-modules over E. Let M1 ⊗M2 = M1 ⊗E M2.
It is viewed as a ϕ-module by

ϕ(x1 ⊗ x2) = ϕ(x1)⊗ ϕ(x2).

One can easily check that M1 ⊗M2 ∈M ét
ϕ (E).

• E is an étale ϕ-module and for every M étale,

M ⊗ E = E ⊗M = M.

• If M is an étale ϕ-module, assume that Φ : Mϕ
∼−→ M corresponds to ϕ.

Set M∗ = LE(M,E), We have

tΦ : M∗ ∼−→ (Mϕ)∗ ' (M∗)ϕ,

where the second isomorphism is the canonical isomorphism since E is a
flat E-module. Then

tΦ−1 : (M∗)ϕ
∼−→M∗

gives a ϕ-module structure on M∗. Moreover, if {e1, · · · , ed} is a basis of
M , and {e∗1, · · · , e∗d} is the dual basis of M∗, then

ϕ(ej) =
∑

aijei, ϕ(e∗j ) =
∑

bije
∗
i

with A and B satisfying B = tA−1.
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2.2.2 The functor M.

Recall that

Definition 2.18. A mod p representation of G is a finite dimensional Fp-
vector space V together with a linear and continuous action of G.

Denote by RepFp
(G) the category of all mod p representations of G.

We know that G acts continuously on Es equipped with the discrete topol-
ogy, Fp ⊂ (Es)G = E, and Es is (Fp, G)-regular. Let V be any mod p repre-
sentation of G. By Hilbert’s Theorem 90, the Es-representation Es ⊗Fp V is
trivial, thus V is always Es-admissible. Set

M(V ) = DEs(V ) = (Es ⊗Fp V )G, (2.15)

then dimE M(V ) = dimFp
V , and

αV : Es ⊗E M(V ) −→ Es ⊗Fp
V

is an isomorphism.
On Es, we have the absolute Frobenius ϕ(x) = xp, which commutes with

the action of G:

ϕ(g(x)) = g(ϕ(x)), for all g ∈ G, x ∈ Es

We define the Frobenius on Es ⊗Fp
V as follows:

ϕ(λ⊗ v) = λp ⊗ v = ϕ(λ)⊗ v.

For all x ∈ Es ⊗Fp V , we have

ϕ(g(x)) = g(ϕ(x)), for all g ∈ G,

which implies that if x is in M(V ), so is ϕ(x). We still denote by ϕ the
restriction of ϕ on M(V ), then we get

ϕ : M(V ) −→M(V ).

Proposition 2.19. If V is a mod p representation of G of dimension d, then
the map

αV : Es ⊗E M(V )→ Es ⊗Fp
V

is an isomorphism, M(V ) is an étale ϕ-module over E and dimE M(V ) = d.

Proof. We already know that

αV : Es ⊗E M(V )→ Es ⊗Fp
V

is an isomorphism and this implies dimE M(V ) = d.
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Suppose {v1, · · · , vd} is a basis of V over Fp and by abuse of notations,
write vi = 1⊗ vi. Suppose {e1, · · · , ed} is a basis of M(V ) over E. Then

ej =
d∑
i=1

bijvi, for B = (bij) ∈ GLd(Es).

Hence

ϕ(ej) =
d∑
i=1

bpijvi =
d∑
i=1

aijei.

Then A = (aij) = B−1ϕ(B), and

detA = (detB)−1 det(ϕ(B)) = (detB)p−1 6= 0.

This proves that M(V ) is étale and hence the proposition. ut

From Proposition 2.19, we thus get an additive functor

M : RepFp
(G)→M ét

ϕ (E). (2.16)

2.2.3 The inverse functor V.

We now define a functor

V : M ét
ϕ (E) −→ RepFp

(G). (2.17)

Let M be any étale ϕ-module over E. We view Es ⊗E M as a ϕ-module via

ϕ(λ⊗ x) = λp ⊗ ϕ(x)

and define a G-action on it by

g(λ⊗ x) = g(λ)⊗ x, for g ∈ G.

One can check that this action commutes with ϕ. Set

V(M) = {y ∈ Es ⊗E M | ϕ(y) = y} = (Es ⊗E M)ϕ=1 , (2.18)

which is a sub Fp-vector space stable under G.

Lemma 2.20. The natural map

αM : Es ⊗Fp V(M) −→ Es ⊗E M
λ⊗ v 7−→ λv

(2.19)

is injective and therefore dimFp
V(M) ≤ dimEM .
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Proof. We need to prove that if v1, · · · , vh ∈ V(M) are linearly independent
over Fp, then they are also linearly independent over Es. We use induction
on h.

The case h = 1 is trivial.
Assume that h ≥ 2, and that there exist λ1, · · · , λh ∈ Es, not all zero, such

that
∑h
i=1 λivi = 0. We may assume λh = −1, then we have vh =

∑h−1
i=1 λivi.

Since ϕ(vi) = vi, we have

vh =
h−1∑
i=1

λpi vi,

which implies λpi = λi by induction, therefore λi ∈ Fp. ut

Theorem 2.21. The functor

M : RepFp
(G) −→M ét

ϕ (E)

is an equivalence of Tannakian categories and

V : M ét
ϕ (E) −→ RepFp

(G)

is a quasi-inverse functor.

Proof. Let V be any mod p representation of G, then

αV : Es ⊗E M(V ) ∼−→ Es ⊗Fp V

is an isomorphism of Es-vector spaces, compatible with Frobenius and with
the action of G. We use this to identify these two terms. Then

V(M(V )) = {y ∈ Es ⊗Fp
V | ϕ(y) = y}.

Let {v1, · · · , vd} be a basis of V . If

y =
d∑
i=1

λi ⊗ vi =
d∑
i=1

λivi ∈ Es ⊗ V,

we get ϕ(y) =
∑
λpi vi, therefore

ϕ(y) = y ⇐⇒ λi ∈ Fp ⇐⇒ y ∈ V.

We have proved that V(M(V )) = V . Since V(M) 6= 0 if M 6= 0, a formal
consequence is that M is an exact and fully faithful functor inducing an equiv-
alence between RepFp

(G) and its essential image (i.e., the full subcategory of
M ét

ϕ (E) consisting of those M which are isomorphic to an M(V )).
We now need to show that if M is an étale ϕ-module over E, then there

exists V such that
M 'M(V ).
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We take V = V(M), and prove that M 'M(V(M)).
Note that

V(M) ={v ∈ Es ⊗E M | ϕ(v) = v}
={v ∈ LE(M∗, Es) | ϕv = vϕ}.

Let {e∗1, · · · , e∗d} be a basis of M∗, and suppose ϕ(e∗j ) =
∑
bije

∗
i , then giving

v is equivalent to giving xi = v(e∗i ) ∈ Es, for 1 ≤ i ≤ d. From

ϕ(v(e∗j )) = v(ϕ(e∗j )),

we have that

xpj = v
( d∑
i=1

bije
∗
i

)
=

d∑
i=1

bijxi.

Thus

V(M) =
{

(x1, · · · , xd) ∈ (Es)d
∣∣∣xpj =

d∑
i=1

bijxi,∀j = 1, ..., d
}
.

Let R = E[x1, · · · , xd]
/
(xpj −

∑d
i=1 bijxi)1≤j≤d, we have

V(M) = HomE−algebra(R,Es). (2.20)

Lemma 2.22. Let p be a prime number, E be a field of characteristic p, Es

be a separable closure of E. Let B = (bij) ∈ GLd(E) and b1, · · · , bd ∈ E. Let

R = E[X1, · · · , Xd]
/
(Xp

j −
d∑
i=1

bijXi − bj)1≤j≤d.

Then the set HomE−algebra(R,Es) has exactly pd elements.

Let’s first finish the proof of the theorem. By the lemma, V(M) has pd ele-
ments, which implies that dimFp

V(M) = d. As the natural map

αM : Es ⊗Fp
V(M) −→ Es ⊗E M

is injective, this is an isomorphism, and one can check that

M(V(M)) 'M.

Moreover this is a Tannakian isomorphism: we have proven the following
isomorphisms

– M(V1 ⊗ V2) = M(V1)⊗M(V2),
– M(V ∗) = M(V )∗,
– M(Fp) = E,
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and one can easily check that these isomorphisms are compatible with Frobe-
nius. Also we have the isomorphisms

– V(M1 ⊗M2) = V(M1)⊗V(M2);
– V(M∗) = V(M)∗;
– V(E) = Fp,

and these isomorphisms are compatible with the action of G. ut

Proof of Lemma 2.22. Write xi the image of Xi in R for every i = 1, · · · , d.
We proceed the proof in three steps.

(1) First we show that dimE R = pd. It is enough to check that {xt11 x
t2
2 · · · t

id
d }

with 0 ≤ ti ≤ p− 1 form a basis of R over E. For m = 0, 1, . . . , d, set

Rm = E[X1, · · · , Xd]
/
(Xp

j −
d∑
i=1

bijXi − bj)1≤j≤m.

Then, for m > 0, Rm is the quotient of Rm−1 by the ideal generated by the
image of Xp

m−
∑d
i=1 bimXi− bm. By induction on m, we see that Rm is a free

E[Xm+1, Xm+2, . . . , Xd]-module with the images of {Xt1
1 X

t2
2 . . . Xtm

m } with
0 ≤ ti ≤ p− 1 as a basis.

(2) Then we prove that R is an étale E-algebra. This is equivalent to

Ω1
R/E = 0. But Ω1

R/E is generated by dx1, · · · , dxd. From xpj =
d∑
i=1

bijxi + bj ,

we have

0 = pxp−1
j dxj =

d∑
i=1

bijdxj ,

hence dxj = 0, since (bij) is invertible in GLd(E).
(3) As R is étale over E, it has the form E1 × · · · × Er (see, e.g. [Mil80],

[FK88] or Illusie’s course note at Tsinghua University) where the Ek’s are
finite separable extensions of E. Set nk = [Ek : E], then pd = dimE R =
r∑

k=1

nk. On the other hand, we have

HomE−algebra(R,Es) =
∐
k

HomE−algebra(Ek, Es),

and for any k, there are exactly nk E-embeddings of Ek into Es. Therefore
the set HomE−algebra(E,Es) has pd elements. ut

Remark 2.23. Suppose d ≥ 1, A ∈ GLd(E), we associate A with an E-vector
space MA = Ed, and equip it with a semi-linear map ϕ : MA → MA defined
by

ϕ(λej) = λp
d∑
i=1

aijei
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where {e1, · · · , ed} is the canonical basis of MA. Then for any A ∈ GLd(E),
we obtain a mod p representation V(MA) of G of dimension d.

On the other hand, if V is any mod p representation of G of dimension d,
then there exists A ∈ GLd(E) such that V ' V(MA). This is because M(V )
is an étale ϕ-module, then there is an A ∈ GLd(E) associated with M(V ),
and M(V ) 'MA. Thus V ' V(MA).

Moreover, if A,B ∈ GLd(E), then

V(MA) ' V(MB)⇔ there exists P ∈ GLd(E), such that B = P−1Aϕ(P ).

Hence, if we define an equivalence relation on GLd(E) by

A ∼ B ⇔ there exists P ∈ GLd(E), such that B = P−1Aϕ(P ),

then we get a bijection between the set of equivalences classes on GLd(E) and
the set of isomorphism classes of mod p representations of G of dimension d.

2.3 p-adic Galois representations of fields of
characteristic p > 0

2.3.1 Étale ϕ-modules over E.

Let E be a field of characteristic p > 0, and Es be a separable closure of E
with the Galois group G = Gal(Es/E). Let RepQp

(G) denote the category
of p-adic representations of G.

From §0.2.4, we let OE be the Cohen ring C(E) of E and E be the field of
fractions of OE . Then

OE = lim←−
n∈N
OE/pnOE

and OE/pOE = E, E = OE [ 1p ]. The field E is of characteristic 0, with a
complete discrete valuation, whose residue field is E and whose maximal ideal
is generated by p. Moreover, if E ′ is another field with the same property, there
is a continuous local homomorphism ι : E → E ′ of valuation fields inducing
the identity on E and ι is always an isomorphism. If E is perfect, ι is unique
and OE may be identified to the ring W (E) of Witt vectors with coefficients
in E. In general, OE may be identified with a subring of W (E).

We can always provide E with a Frobenius ϕ which is a continuous endo-
morphism sending OE into itself and inducing the absolute Frobenius x 7→ xp

on E. Again ϕ is unique whenever E is perfect.
For the rest of this section, we fix a choice of E and ϕ.

Definition 2.24. (1) A ϕ-module over OE is an OE -module M equipped with
a semi-linear map ϕ : M →M , that is:

ϕ(x+ y) = ϕ(x) + ϕ(y)
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ϕ(λx) = ϕ(λ)ϕ(x)

for x, y ∈M, λ ∈ OE .
(2) A ϕ-module over E is an E-vector space D equipped with a semi-linear

map ϕ : D → D.

Remark 2.25. A ϕ-module over OE killed by p is just a ϕ-module over E.

Set
Mϕ = OE ϕ⊗OE M.

As before, giving a semi-linear map ϕ : M →M is equivalent to giving a OE -
linear map Φ : Mϕ →M . Similarly if we set Dϕ = E ϕ⊗ED, then a semi-linear
map ϕ : D → D is equivalent to a linear map Φ : Dϕ → D.

Definition 2.26. (1) A ϕ-module over OE is étale if M is an OE -module of
finite type and Φ : Mϕ →M is an isomorphism.

(2) A ϕ-module D over E is étale if dimE D < ∞ and if there exists an
OE -lattice M of D which is stable under ϕ, such that M is an étale ϕ-module
over OE .

It is easy to check that

Proposition 2.27. If M is an OE -module of finite type with an action of ϕ,
then M is étale if and only if M/pM is étale as an E-module.

Recall that an OE -lattice M is a sub OE -module of finite type containing
a basis. If {e1, · · · , ed} is a basis of M over OE , then it is also a basis of D
over E , and

ϕej =
d∑
i=1

aijei, (aij) ∈ GLd(OE).

One sees immediately that

Proposition 2.28. The category M ét
ϕ (OE) (resp. M ét

ϕ (E)) of étale ϕ-modules
over OE (resp. E) is abelian.

Let RepQp
(G) (resp. RepZp

(G)) be the category of p-adic representations
(resp. of Zp-representations) of G. We want to construct equivalences of cat-
egories:

D : RepQp
(G)→M ét

ϕ (E)

and
M : RepZp

(G)→M ét
ϕ (OE).
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2.3.2 The field Êur

Let F be a finite extension of E , OF be the ring of the integers of F . We say
F/E is unramified if

(1) p is a generator of the maximal ideal of OF ;
(2) F = OF/p is a separable extension of E.

For any homomorphism f : E → F of fields of characteristic p, by Theo-
rem 0.43, the functoriality of Cohen rings tells us that there is a local homo-
morphism (unique up to isomorphism) C(E)→ C(F ) which induces f on the
residue fields.

For any finite separable extension F of E, the inclusion E ↪→ F induces
a local homomorphism C(E) → C(F ), and through this homomorphism we
identify C(E) as a subring of C(F ). Then there is a unique unramified extension
F = Frac C(F ) of E whose residue field is F (here unique means that if F ,
F ′ are two such extensions, then there exists a unique isomorphism F → F ′
which induces the identity on E and on F ), and moreover there exists a unique
endomorphism ϕ′ : F) → F such that ϕ′ maps C(F ) to itself, ϕ′|E = ϕ and
induces the absolute Frobenius map λ 7→ λp on F . We write F = EF and still
denote ϕ′ as ϕ.

Again by Theorem 0.43, this construction is functorial:

σ : F → F ′, σ|E = Id induces σ : EF → EF ′ , σ|E = Id

and σ commutes with the Frobenius map ϕ. In particular, if F/E is Galois,
then EF /E is also Galois with Galois group

Gal(EF /E) = Gal(F/E)

and the action of Gal(F/E) commutes with ϕ.
Let Es be a separable closure of E, then

Es =
⋃
F∈S

F

where S denotes the set of finite extensions of E contained in Es. If F, F ′ ∈ S
and F ⊂ F ′, then EF ⊂ EF ′ , we set

Eur := lim−→
F∈S
EF . (2.21)

Then Eur/E is a Galois extension with Gal(Eur/E) = G. Let Êur be the com-
pletion of Eur, and OÊur be its ring of integers. Then OÊur is a local ring,
and

OÊur = lim←−OEur/pnOEur . (2.22)

We have the endomorphism ϕ on Eur such that ϕ(OEur) ⊂ OEur . The
action of ϕ extends by continuity to an action on OÊur and Êur. Similarly we
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have the action of G on Eur, OÊur and Êur. Moreover the action of ϕ commutes
with the action of G. We have the following important facts:

Proposition 2.29. (1) (Êur)G = E, (OÊur)G = OE .
(2) (Êur)ϕ=1 = Qp, (OÊur)ϕ=1 = Zp.

Proof. We regard all rings above as subrings of W (Es). The inclusion OÊur ↪→
W (Es) is G- and ϕ-compatible. Since W (Es)ϕ=1 = Zp, (2) follows immedi-
ately. Since

W (Es)G = W (E),

and by construction, W (E) ∩OEur = OE , then W (E) ∩OÊur = ÔE = OE , (1)
follows. ut

2.3.3 OÊur and Zp representations.

Proposition 2.30. For any OÊur-representation X of G, the natural map

OÊur ⊗OE XG → X

is an isomorphism.

Proof. We prove the isomorphism in two steps.
(1) Assume there exists n ≥ 1 such that X is killed by pn. We prove the

proposition in this case by induction on n.
For n = 1, X is an Es-representation of G and this has been proved in

Proposition 2.7.
Assume n ≥ 2. Let X ′ be the kernel of the multiplication by p on X and

X ′′ = X/X ′. We get a short exact sequence

0→ X ′ → X → X ′′ → 0

where X ′ is killed by p and X ′′ is killed by pn−1. Also we have a long exact
sequence

0→ X ′G → XG → X ′′G → H1
cont(G,X

′).

Since X ′ is killed by p, it is just an Es-representation of G, hence it is trivial
(cf. Proposition 2.7), i.e. X ′ ' (Es)d with the natural action of G. So

H1
cont(G,X

′) = H1(G,X ′) ' (H1(G,Es))d = 0.

Then we have the following commutative diagram:

0 // OÊur ⊗OE X ′G //

��

OÊur ⊗OE XG //

��

OÊur ⊗OE X ′′G //

��

0

0 // X ′ // X // X ′′ // 0.

By induction, the middle map is an isomorphism.
(2) Since X = lim←−

n∈N
X/pn, the general case follows by passing to the limits.

ut
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Let T be a Zp-representation of G, then OÊur ⊗Zp
T is a ϕ-module over

OE , with ϕ and G acting on it through

ϕ(λ⊗ t) = ϕ(λ)⊗ t, g(λ⊗ t) = g(λ)⊗ g(t)

for any g ∈ G, λ ∈ OÊur and t ∈ T . Let

M(T ) = (OÊur ⊗Zp
T )G, (2.23)

then by Proposition 2.30,

αT : OÊur ⊗OE M(T )→ OÊur ⊗Zp T (2.24)

is an isomorphism, which implies that M(T ) is an OE -module of finite type,
and moreover M(T ) is étale. Indeed, from the exact sequence 0 → T →
T → T/pT → 0, one gets the isomorphism M(T )/pM(T ) ∼−→ M(T/pT ) as
H1(G,OÊur ⊗Zp T ) = 0 by Proposition 2.30. Thus M(T ) is étale if and only if
M(T/pT ) is étale as a ϕ-module over E, which is shown in Proposition 2.19.

Let M be an étale ϕ-module over OE , and let ϕ and G act on OÊur ⊗OEM
through g(λ ⊗ x) = g(λ) ⊗ x and ϕ(λ ⊗ x) = ϕ(λ) ⊗ ϕ(x) for any g ∈ G,
λ ∈ OÊur and x ∈M . Let

V(M) = {y ∈ OÊur ⊗OE M | ϕ(y) = y} =
(
OÊur ⊗OE M

)
ϕ=1

. (2.25)

Proposition 2.31. For any étale ϕ-module M over OE , the natural map

OÊur ⊗Zp V(M)→ OÊur ⊗OE M

is an isomorphism.

Proof. (1) We first prove the case when M is killed by pn, for a fixed n ≥ 1
by induction on n. For n = 1, this is the result for étale ϕ-modules over E.
Assume n ≥ 2. Consider the exact sequence:

0→M ′ →M →M ′′ → 0,

where M ′ is the kernel of the multiplication by p in M . Then we have an
exact sequence

0→ OÊur ⊗OE M ′ → OÊur ⊗OE M → OÊur ⊗OE M ′′ → 0,

Let X ′ = OÊur ⊗OE M ′, X = OÊur ⊗OE M , X ′′ = OÊur ⊗OE M ′, then X ′ϕ=1 =
V(M ′), Xϕ=1 = V(M), X ′′ϕ=1 = V(M ′′). If the sequence

0→ X ′ϕ=1 → Xϕ=1 → X ′′ϕ=1 → 0

is exact, then we can apply the same proof as the proof for the previous
proposition. So consider the exact sequence:
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0→ X ′ϕ=1 → Xϕ=1 → X ′′ϕ=1
δ→ X ′/(ϕ− 1)X ′,

where if x ∈ Xϕ=1, y is the image of x in X ′′ϕ=1, then δ(y) is the image of
(ϕ − 1)(x). It is enough to check that X ′/(ϕ − 1)X ′ = 0. As M ′ is killed by
p, X ′ = Es ⊗E M ′

∼→ (Es)d, as an Es-vector space with a Frobenius. Then
X ′/(ϕ− 1)X ′ ∼−→ (Es/(ϕ− 1)Es)d. For any b ∈ Es, there exist a ∈ Es, such
that a is a root of the polynomial Xp − X − b, so b = ap − a = (ϕ − 1)a ∈
(ϕ− 1)Es.

(2) The general case follows by passing to the limits. ut

The following result is a straightforward consequence of the two previous
results and extend the analogous result in Theorem 2.21 for mod-p represen-
tations.

Theorem 2.32. The functor

M : RepZp
(G)→M ét

ϕ (OE), T 7→M(T )

is an equivalence of categories and

V : M ét
ϕ (OE)→ RepZp

(G), M 7→ V(M)

is a quasi-inverse functor of M.

Proof. Identify OÊur ⊗OE M(T ) with OÊur ⊗Zp T through (2.24), then

V(M(T )) =(OÊur ⊗OE M(T ))ϕ=1 = (OÊur ⊗Zp
T )ϕ=1

=(OÊur)ϕ=1 ⊗Zp
T = T,

and

M(V(M)) =(OÊur ⊗Zp
V(M))G ' (OÊur ⊗OE M)G

=OGÊur ⊗OE M = M.

The theorem is proved.

2.3.4 p-adic representations.

If V is a p-adic representation of G, D is an étale ϕ-module over E , let

D(V ) = (Êur⊗Qp
V )G,

V(D) = (Êur⊗ED)ϕ=1,

Theorem 2.33. (1) For any p-adic representation V of G, D(V ) is an étale
ϕ-module over E, and the natural map:

Êur⊗ED(V )→ Êur⊗Qp
V
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is an isomorphism.
(2) For any étale ϕ-module D over E, V(D) is a p-adic representation of

G and the natural map

Êur⊗QpV(D)→ Êur⊗ED

is an isomorphism.
(3) The functor

D : RepQp
(G)→M ét

ϕ (E)

is an equivalence of categories, and

V : M ét
ϕ (E)→ RepQp

(G)

is a quasi-inverse functor.

Proof. The proof is a formal consequence of what we did in §2.3.3 and of the
following two facts:

(i) For any p-adic representation V of G, there exists a Zp-lattice T stable
under G, V = Qp ⊗Zp

T . Thus

Êur⊗Qp
V = (OÊur ⊗Zp

T )[1/p], D(V ) = M(T )[1/p] = E ⊗OE M(T ).

(ii) For any étale ϕ-module D over E , there exists an OE -lattice M stable
under ϕ, which is an étale ϕ-module over OE , D = E ⊗OE M . Thus

Êur⊗ED = (OÊur ⊗OE M)[1/p], V(D) = V(M)[1/p] = Qp ⊗Zp
V(M).

ut

Remark 2.34. The category M ét
ϕ (E) has a natural structure of a Tannakian

category, i.e. one may define a tensor product, a duality and the unit object
and they have suitable properties. For instance, if D1, D2 are étale ϕ-modules
over E , their tensor productD1⊗D2 isD1⊗ED2 with action of ϕ: ϕ(x1⊗x2) =
ϕ(x1) ⊗ ϕ(x2). Then the functor M is a tensor functor, i.e. we have natural
isomorphisms

D(V1)⊗D(V2)→ D(V1 ⊗ V2) and D(V ∗)→ D(V )∗.

Similarly, we have a notion of tensor product in the category M ét
ϕ (OE), two

notion of duality (one for free OE -modules, the other for p-torsion modules)
and similar natural isomorphisms.

2.3.5 Down to earth meaning of the equivalence of categories.

For any d ≥ 1, A ∈ GLd(OE), let MA = OdE as an OE -module, let {e1, · · · , ed}

be the canonical basis of MA. Set ϕ(ej) =
d∑
i=1

aijei. Then MA is an étale ϕ-

module over OE and TA = V(MA) is a Zp-representation of G. Furthermore,
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VA = Qp ⊗Zp
TA = V(DA) is a p-adic representation of G with DA = Ed as

an E-vector space with the same ϕ.
On the other hand, for any p-adic representation V of G of dimension

d, there exists A ∈ GLd(OE), such that V ' VA. Given A,B ∈ GLd(OE),
TA is isomorphic to TB if and only if there exists P ∈ GLd(OE), such that
B = P−1Aϕ(P ). VA is isomorphic to VB if and only if there exists P ∈ GLd(E)
such that B = P−1Aϕ(P ).

Hence, if we define the equivalence relation on GLd(OE) by

A ∼ B ⇔ there exists P ∈ GLd(E), such that B = P−1Aϕ(P ),

we get a bijection between the set of equivalence classes and the set of iso-
morphism classes of p-adic representations of G of dimension d.

Remark 2.35. If A is in GLd(OE) and P ∈ GLd(OE), then P−1Aϕ(P ) ∈
GLd(OE). But if P ∈ GLd(E), then P−1Aϕ(P ) may or may not be in
GLd(OE).
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C-representations and Methods of Sen

3.1 Krasner’s Lemma and Ax-Sen’s Lemma

3.1.1 Krasner’s Lemma.

Proposition 3.1 (Krasner’s Lemma). Let F be a complete nonarchimedean
field, and E be a closed subfield of F , let α, β ∈ F with α separable over E.
Assume that |β − α| < |α′ − α| for all conjugates α′ of α over E, α′ 6= α.
Then α ∈ E(β).

Proof. Let E′ = E(β), γ = β − α. Then E′(γ) = E′(α), and E′(γ)/E′ is
separable. We want to prove that E′(γ) = E′. It suffices to prove that there
is no conjugate γ′ of γ over E′ distinct from γ. Let γ′ = β − α′ be such a
conjugate, then |γ′| = |γ|. It follows that |γ′−γ| ≤ |γ| = |β−α|. On the other
hand, |γ′ − γ| = |α′ − α| > |β − α| which leads to a contradiction. ut

Corollary 3.2. Let K be a complete nonarchimedean field, Ks be a separable
closure of K, K be an algebraic closure of K containing Ks. Then K̂s = K̂
and it is an algebraically closed field.

Proof. Let C = K̂s, we shall prove:

(i) If charK = p, then for any a ∈ C, there exists α ∈ C, such that αp = a.
(ii) C is separably closed.

Proof of (i): Choose π ∈ mK , π 6= 0. Choose v = vπ, i.e., v(π) = 1. Then

OKs = {a ∈ Ks | v(a) ≥ 0}, OC = lim←−OKs/πnOKs

and C = OC [1/π]. Thus πmpa ∈ OC for m � 0, we may assume a ∈ OC .
Choose a sequence (an)n∈N of elements of OKs , such that a ≡ an modπn. Let

Pn(X) = Xp − πnX − an ∈ Ks[X],
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then P ′n(X) = −πn 6= 0 and Pn is separable. Let αn be a root of Pn in Ks,
αn ∈ OKs . Then

αpn+1 − αpn = πn+1αn+1 − πnαn + an+1 − an,

one has v(αpn+1−αpn) ≥ n. Since (αn+1−αn)p = αpn+1−αpn, v(αn+1−αn) ≥
n/p, which implies (αn)n∈N converges in OC . Call α the limit of (αn), then
αp = lim

n→+∞
αpn = a since v(αpn − a) = v(πnαn + an − a) ≥ n.

Proof of (ii): Let

P (X) = a0 + a1X + a2X
2 + · · ·+ ad−1X

d−1 +Xd

be an arbitrary separable polynomial in C[X]. We need to prove P (X) has a
root in C. We may assume ai ∈ OC . Let C ′ be the decomposition field of P
over C, let r = max v(αi−αj), where αi and αj are distinct roots of P in C ′.
Let

P1 = b0 + b1X + b2X
2 + · · ·+ bd−1X

d−1 +Xd ∈ Ks[X]

with bi ∈ Ks, and v(bi − ai) > rd. We know, because of part (i), that C
contains K, hence there exists β ∈ C, such that P1(β) = 0. Choose α ∈ C ′, a
root of P , such that |β − α′| ≥ |β − α| for any α′ ∈ C ′ and P (α′) = 0. Since
P (β) = P (β) − P1(β), and v(β) ≥ 0, we have v(P (β)) > rd. On the other
hand,

P (β) =
d∏
i=1

(β − αi),

thus

v(P (β)) =
d∑
i=1

v(β − αi) > rd.

It follows that v(β−α) > r. Applying Krasner’s Lemma, we get α ∈ C(β) = C.
ut

3.1.2 Ax-Sen’s Lemma.

Let K be a nonarchimedean field, let E be an algebraic extension of K. For
any α containing in any separable extension of E, set

∆E(α) = min{v(α′ − α)}, (3.1)

where α′ are conjugates of α over E. Then

∆E(α) = +∞ if and only if α ∈ E.

Ax-Sen’s Lemma means that if all the conjugates α′ are close to α, then
α is close to an element of E.
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Proposition 3.3 (Ax-Sen’s Lemma, Characteristic 0 case). Let K,E, α
be as above, Assume charK = 0, then there exists a ∈ E such that

v(α− a) > ∆E(α)− p

(p− 1)2
v(p). (3.2)

Remark 3.4. If choose v = vp, then vp(α − a) > ∆E(α) − p
(p−1)2 , but ∆E(α)

is dependent of vp.

We shall follow the proof of Ax ([Ax70]).

Lemma 3.5. Let R ∈ E[X] be a monic polynomial of degree d ≥ 2, such that
v(λ) ≥ r for any root λ of R in E, the algebraic closure of E. Let m ∈ N,
with 0 < m < d, then there exists µ ∈ F , such that µ is a root of R(m)(X),
the m-th derivative of R(X), and

v(µ) ≥ r − 1
d−m

v
(( d
m

))
.

Proof. Let

R = (X − λ1)(X − λ2) · · · (X − λd) =
d∑
i=0

biX
i,

then bi ∈ Z[λ1, · · · , λd] are homogeneous of degree d−i. If follows that v(bi) ≥
(d− i)r. Write

1
m!
R(m)(X) =

d∑
i=m

(
i

m

)
biX

i−m =
(
d

m

)
(X − µ1)(X − µ2) · · · (X − µd−m),

then bm =
(
d
m

)
(−1)d−mµ1µ2 · · ·µd−m. Hence

d−m∑
i=1

v(µi) = v(bm)− v
(( d
m

))
≥ (d−m)r − v

(( d
m

))
.

There exists i, such that

v(µi) ≥ r −
1

d−m
v
(( d
m

))
.

The proof is finished. ut

Proof (Proof of Proposition 3.3). For any d ≥ 1, let l(d) be the biggest integer

l such that pl ≤ d. Let ε(d) =
l(d)∑
i=1

1
pi−pi−1 . Then l(d) = 0 if and only if d < p,

or if and only if ε(d) = 0. We want to prove that if [E(α) : E] = d, then there
exists a ∈ E, such that
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v(α− a) > ∆E(α)− ε(d)v(p).

This implies the proposition, since ε(d) ≤ ε(d+ 1) and lim
d→+∞

ε(d) = p
(p−1)2 .

We proceed by induction on d. It is easy to check for d = 1. Now we assume
d ≥ 2. Let P be the monic minimal polynomial of α over E. Let

R(X) = P (X + α), R(m)(X) = P (m)(X + α).

If d is not a power of P , then d = psn, with n prime to p, and n ≥ 2. Otherwise
write d = psp, s ∈ N. Let m = ps.

Choose µ as in Lemma 3.5. The roots of R are of the form α′ − α for α′ a
conjugate of α. Set r = ∆E(α), and β = µ+ α. Then

v(β − α) ≥ r − 1
d−m

v
(( d
m

))
.

As P (m)(β) = 0, and P (m)(X) ∈ E[X] is of degree d−m, β is algebraic over
E of degree not higher than d −m. Either β ∈ E, then we choose a = β, or
β /∈ E, then we choose a ∈ E such that v(β−a) ≥ ∆E(β)−ε(d−m)v(p), whose
existence is guaranteed by induction. We need to check that v(α−a) > r−ε(d).

Case 1: d = psn (n ≥ 2), and m = ps. It is easy to verify v(
(
d
m

)
) =

v(
(
psn
ps

)
) = 0, so v(µ) = v(β − α) ≥ r. If β′ is a conjugate of β, β′ = α′ + µ′,

then
v(β′ − β) = v(α′ − α+ µ′ − µ) ≥ r,

which implies ∆E(β) ≥ r. Hence v(β − a) ≥ r − ε(d− ps)v(p), and

v(α− a) ≥ min{v(α− β), v(β − a)} ≥ r − ε(d)v(p).

Case 2: d = psp, and m = ps. Then v(
(
d
m

)
) = v(

(
ps+1

ps

)
) = v(p), and

v(µ) ≥ r − 1
ps+1−ps v(p). Let β′ be any conjugate of β, β′ = µ′ + α′, then

v(β′ − β) = v(µ′ − µ+ α′ − α) ≥ r − 1
ps+1 − ps

v(p),

which implies ∆E(β) ≥ r − 1
ps+1−ps v(p). Then

v(β − a) ≥ r − 1
ps+1 − ps

v(p)− ε(ps+1 − ps)v(p) = r − ε(ps+1)v(p).

Hence v(α− a) = v(α− β + β − a) ≥ r − ε(d)v(p). ut

Proposition 3.6 (Ax-Sen’s Lemma, Characteristic > 0 case). Assume
K,E, α as before. Assume K is perfect of characteristic p > 0, then for any
ε > 0, there exists a ∈ E, such that v(α− a) ≥ ∆E(α)− ε.
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Proof. Let L = E(α), and L/E is separable. Therefore there exists c ∈ L

such that TrL/E(c) = 1. For r � 0, v(cp
−r

) > −ε. Let c′ = cp
−r

, then
(TrL/E(c′))p

r

= TrL/E(c) = 1. Replacing c by c′, we may assume v(c) > −ε.
Let

S = {σ | σ : L ↪→ E be an E-embedding},
and let

a = TrL/E(cα) =
∑
σ∈S

σ(cα) =
∑
σ∈S

σ(c)σ(α) ∈ E.

As
∑
σ∈S

σ(c)α = TrL/E(c) = 1,

v(α− a) = v(
∑
σ∈S

σ(c)(α− σ(α))) ≥ min{v(σ(c)(α− σ(α)))} ≥ ∆E(α)− ε.

This completes the proof. ut

We give an application of Ax-Sen’s Lemma. Let K be a complete nonar-
chimedean field, Ks be a separable closure of K. Let GK = Gal(Ks/K),
C = K̂s. The action of GK extends by continuity to C. Let H be any closed
subgroup of GK , L = (Ks)H , and H = Gal(Ks/L). A question arises:

Question 3.7. What is CH?

If charK = p, we have K ⊂ C. Let

Lrad = {x ∈ C | there exists n, such that xp
n

∈ L}.

Then H acts trivially on Lrad. Indeed, for any x ∈ Lrad, there exists n ∈ N,
such that xp

n

= a ∈ L, then for any g ∈ H, (g(x))p
n

= xp
n

, which implies
g(x) = x. Hence L̂rad ⊂ CH .

Proposition 3.8. For any close subgroup H of GK , we have

CH =

{
L̂, if charK = 0,

L̂rad, if charK = p
(3.3)

where L = (Ks)H . In particular,

CGK =

{
K̂ = K, if charK = 0,

K̂rad, if charK = p.
(3.4)

Proof. If charK = p, we have a diagram:

Ks

GK

⊂ (Krad)s = K

GK

⊂ (K̂rad)s = K̂rad ⊂

GK

C

K ⊂ Krad ⊂ K̂rad
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with K̂rad perfect. This allows us to replace K by K̂rad, thus we may assume
that K is perfect, in which case L̂rad = L̂, the proposition is reduced to the
claim that CH = L̂.

If charK = p, we choose any ε > 0. If charK = 0, we choose ε =
p

(p−1)2 v(p). For any α ∈ CH , we want to prove that α ∈ L̂. We choose a
sequence of elements αn ∈ K such that v(α− αn) ≥ n, it follows that

v(g(αn)− αn) ≥ min{v(g(αn − α)), v(αn − α)} ≥ n,

for any g ∈ H. Thus ∆L(αn) ≥ n, which implies that there exists an ∈ L,
such that v(αn − an) ≥ n− ε, and lim

n→+∞
an = α ∈ L̂. ut

3.2 Classification of C-representations

LetK be a p-adic field. Let G = GK = Gal(K/K). Let v = vp be the valuation

of K and its extensions such that v(p) = 1. Let C = K̂.
We fix K∞, a ramified Zp-extension of K contained in K. Let H = GK∞ =

Gal(K/K∞). Let Γ = Γ0 = Gal(K∞/K) ∼= Zp. Let Γm = Γ p
m

and Km =
KΓm
∞ be the subfield of K∞ fixed by Γm. Let γ be a topological generator of

Γ and let γm = γp
m

, which is a topological generator of Γm.
For any subfield F of C, let F̂ be its closure in C. We assume the fields

considered in this section are endowed with the natural p-adic topology.
We first study the cohomology group H1

cont(G,GLn(C)).

3.2.1 Almost étale descent.

Lemma 3.9. Let H0 be an open subgroup of H and U be a cocycle H0 →
GLn(C) such that v(Uσ − 1) ≥ a, a > 0 for all σ ∈ H0. Then there exists a
matrix M ∈ GLn(C), v(M − 1) ≥ a/2, such that

v(M−1Uσσ(M)− 1) ≥ a+ 1, for all σ ∈ H0.

Proof. The proof is imitating the proof of Hilbert’s Theorem 90 (Theo-
rem 0.108).

FixH1 ⊂ H0 open and normal such that v(Uσ−1) ≥ a+1+a/2 for σ ∈ H1,
which is possible by continuity. By Corollary 0.89, we can find α ∈ CH1 such
that

v(α) > −a/2,
∑

τ∈H0/H1

τ(α) = 1.

Let S ⊂ H be a set of representatives of H0/H1, denote MS =
∑
σ∈S

σ(α)Uσ, we

have MS − 1 =
∑
σ∈S

σ(α)(Uσ − 1), this implies v(MS − 1) > a/2 and moreover
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M−1
S =

+∞∑
n=0

(1−MS)n,

so we have v(M−1
S ) > 0 and MS ∈ GLn(C).

If τ ∈ H1, then Uστ −Uσ = Uσ(σ(Uτ )− 1). Let S′ ⊂ H0 be another set of
representatives of H0/H1, so for any σ′ ∈ S′, there exists τ ∈ H1 and σ ∈ S
such that σ′ = στ , so we get

MS −MS′ =
∑
σ∈S

σ(α)(Uσ − Uστ ) =
∑
σ∈S

σ(α)Uσ(1− σ(Uτ )),

thus
v(MS −MS′) > a+ 1 + a/2− a/2 = a+ 1.

For any τ ∈ H0,

Uττ(MS) =
∑
σ∈S

τσ(α)Uττ(Uσ) = MτS .

Then
M−1
S Uττ(MS) = 1 +M−1

S (MτS −MS),

with v(M−1
S (MτS − MS)) ≥ a + 1. Take M = MS for any S, we get the

result. ut

Corollary 3.10. Under the same hypotheses as the above lemma, there exists
M ∈ GLn(C) such that

v(M − 1) ≥ a/2, M−1Uσσ(M) = 1, for all σ ∈ H0.

Proof. Repeat the lemma (a 7→ a+1 7→ a+2 7→ · · · ), and take the limits. ut

Proposition 3.11. H1
cont(H,GLn(C)) = 1.

Proof. We need to show that any given cocycle U on H with values in GLn(C)
is trivial. Pick a > 0, by continuity, we can choose an open normal subgroup
H0 of H such that v(Uσ − 1) > a for any σ ∈ H0. By Corollary 3.10, the
restriction of U on H0 is trivial. By the inflation-restriction sequence

1→ H1
cont(H/H0,GLn(CH0))→ H1

cont(H,GLn(C))→ H1
cont(H0,GLn(C)),

since H/H0 is finite, by Hilbert Theorem 90, H1
cont(H/H0,GLn(CH0)) is triv-

ial, as a consequence U is also trivial. ut

Proposition 3.12. The inflation map gives a bijection

j : H1
cont(Γ,GLn(K̂∞)) ∼−→ H1

cont(G,GLn(C)). (3.5)

Proof. This follows from the exact inflation-restriction sequence

1→ H1
cont(Γ,GLn(CH))→ H1

cont(G,GLn(C))→ H1
cont(H,GLn(C)),

since the third term is trivial by the previous Proposition, K̂∞ = CH , and
the inflation map is injective. ut



94 3 C-representations and Methods of Sen

3.2.2 Decompletion.

Recall by Corollary 0.92 and Proposition 0.97, for Tate’s normalized trace
map Rr(x), we have constants c, d independent of r, such that

v(Rr(x)) ≥ v(x)− c, x ∈ K̂∞ (3.6)

and

v((γr − 1)−1x) ≥ v(x)− d, x ∈ Xr = {x ∈ K̂∞ | Rr(x) = 0}. (3.7)

Lemma 3.13. Given δ > 0, b ≥ 2c + 2d + δ. Given r ≥ 0. Suppose U =
1 + U1 + U2 with

U1 ∈ Mn(Kr), v(U1) ≥ b− c− d
U2 ∈ Mn(C), v(U2) ≥ b′ ≥ b.

Then, there exists M ∈ GLn(C), v(M − 1) ≥ b− c− d such that

M−1Uγr(M) = 1 + V1 + V2,

with

V1 ∈ Mn(Kr), v(V1) ≥ b− c− d,
V2 ∈ Mn(C), v(V2) ≥ b′ + δ.

Proof. One has U2 = Rr(U2) + (1− γr)V such that

v(Rr(U2)) ≥ v(U2)− c, v(V ) ≥ v(U2)− c− d.

Thus,

(1 + V )−1Uγr(1 + V ) = (1− V + V 2 − · · · )(1 + U1 + U2)(1 + γr(V ))
= 1 + U1 + (γr − 1)V + U2 + (terms of degree ≥ 2).

Let V1 = U1 + Rr(U2) ∈ Mn(Kr) and W be the terms of degree ≥ 2. Thus
v(W ) ≥ b+ b′ − 2c− 2d ≥ b′ + δ. So we can take M = 1 + V , V2 = W . ut

Corollary 3.14. Keep the same hypotheses as in Lemma 3.13. Then there
exists M ∈ GLn(K̂∞), v(M−1) ≥ b−c−d such that M−1Uγr(M) ∈ GLn(Kr).

Proof. Repeat the lemma (b 7→ b+ δ 7→ b+ 2δ 7→ · · · ), and take the limit. ut

Lemma 3.15. Suppose B ∈ GLn(C). If there exist V1, V2 ∈ GLn(Ki) such
that for some r ≥ i,

v(V1 − 1) > d, v(V2 − 1) > d, γr(B) = V1BV2,

then B ∈ GLn(Ki).
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Proof. Take C = B − Ri(B). We have to show that C = 0. Note that C has
coefficients in Xi = (1− Ri)K̂∞, and Ri is Ki-linear and commutes with γr,
thus,

γr(C)− C = V1CV2 − C = (V1 − 1)CV2 + V1C(V2 − 1)− (V1 − 1)C(V2 − 1)

Hence, v(γr(C)−C) > v(C)+d. By Proposition 0.97, this implies v(C) = +∞,
i.e. C = 0. ut

Proposition 3.16. The inclusion GLn(K∞) ↪→ GLn(K̂∞) induces a bijec-
tion

i : H1
cont(Γ,GLn(K∞)) ∼−→ H1

cont(Γ,GLn(K̂∞)).

Moreover, for any σ → Uσ a continuous cocycle of H1
cont(Γ,GLn(K̂∞)), if

v(Uσ− 1) > 2c+2d for σ ∈ Γr, then there exists M ∈ GLn(K∞), v(M − 1) >
c+ d such that

σ 7−→ U ′σ = M−1Uσσ(M)

satisfies U ′σ ∈ GLn(Kr).

Proof. We first prove injectivity. Let U , U ′ be cocycles of Γ in GLn(K∞) and
suppose they become cohomologous in GLn(K̂∞), that is, there is an M ∈
GLn(K̂∞) such that M−1Uσσ(M) = U ′σ for all σ ∈ Γ . In particular, γr(M) =
U−1
γr
MU ′γr

. Pick r large enough such that Uγr
and U ′γr

satisfy the conditions
in Lemma 3.15, then M ∈ GLn(Kr). Thus U and U ′ are cohomologous in
GLn(K∞), and injectivity is proved.

We now prove surjectivity. Given U , a cocycle of Γ in GLn(K̂∞), by con-
tinuity there exists an r such that for all σ ∈ Γr, we have v(Uσ−1) > 2c+2d.
By Corollary 3.14, there exists M ∈ GLr(C), v(M − 1) > c + d such that
U ′γr

= M−1Uγrγr(M) ∈ GLn(Kr). Moreover, we have M ∈ GLn(K∞) by
using Lemma 3.15 again.

Put U ′σ = M−1Uσσ(M) for all σ ∈ Γ . For any such σ we have

U ′σσ(U ′γr
) = U ′σγr

= U ′γrσ = U ′γr
γr(U ′σ),

which implies γr(U ′σ) = U ′ −1
γr

U ′σσ(U ′γr
). Apply Lemma 3.15 with V1 =

U ′ −1
γr

, V2 = σ(U ′γr
), then U ′σ ∈ GLn(Kr).

The last part follows from the proof of surjectivity. ut

Theorem 3.17. the map

η : H1
cont(Γ,GLn(K∞)) −→ H1

cont(G,GLn(C))

induced by G→ Γ and GLn(K∞) ↪→ GLn(C) is a bijection.
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3.2.3 Study of C-representations.

by Proposition 2.6, if L/K is a Galois extension, we know that there is a one-
one correspondence between the elements of H1

cont(Gal(L/K),GLn(L)) and
the isomorphism classes of L-representations of dimension n of Gal(L/K).
Thus we can reformulate the results in the previous subsections in the language
of C-representations.

Let W be a C-representation of G of dimension n. Let

Ŵ∞ = WH = {ω | ω ∈W, σ(ω) = ω for all σ ∈ H}.

It is a K̂∞-vector space since CH = K̂∞. One has:

Theorem 3.18. The natural map

Ŵ∞ ⊗K̂∞ C −→W

is an isomorphism.

Proof. This is a reformulation of Proposition 3.11. ut

Theorem 3.19. There exists r ∈ N and a Kr-representation Wr of dimension
n, such that

Wr ⊗Kr
K̂∞

∼−→ Ŵ∞.

Proof. This is a reformulation of Proposition 3.16. Let {e1, · · · , en} be a basis
of Ŵ∞, the associated cocycle σ → Uσ inH1

cont(Γ,GLn(K̂∞)) is cohomologous
to a cocycle with values in GLn(Kr) for r sufficiently large. Thus there exists
a basis {e′1, · · · , e′n} of Ŵ∞, such that Wr = Kre

′
1 ⊕ · · · ⊕Kre

′
n is invariant

by Γr. ut

From now on, we identify Wr ⊗Kr K̂∞ with Ŵ∞ and Wr with Wr ⊗ 1 in
Ŵ∞.

Definition 3.20. We call a vector ω ∈ Ŵ∞ K-finite if its translate by Γ
generates a K-vector space of finite dimension. Let W∞ be the set of all K-
finite vectors.

By definition, one sees easily that W∞ is a K∞-subspace of Ŵ∞ on which
Γ acts. Moreover, Wr is a subset of W∞.

Corollary 3.21. One has Wr ⊗Kr
K∞ = W∞, and hence W∞ ⊗K∞ K̂∞ ∼=

Ŵ∞.

Proof. Certainly Wr ⊗Kr
K∞ ⊂ W∞ is a sub K∞-vector space of W∞.

On the other hand the dimension of Wr ⊗Kr
K∞ is n, and dimK∞W∞ ≤

dimK̂∞
Ŵ∞ = n. ut

Remark 3.22. The set Wr depends on the choice of basis and is not canonical,
but W∞ is canonical.
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3.2.4 Sen’s operator Θ.

Given a C-representation W of G, let Wr, W∞ be given as above. By Propo-
sition 3.16, there is a basis {e1, · · · , en} of Wr (over Kr) which is also a basis
of W∞ (over K∞) and of W (over C). We fix this basis. Under this basis,
ρ(γr) = Uγr

∈ GLn(Kr) satisfies v(Uγr
− 1) > c+ d.

We denote by log ◦χ the composite map G → Γ ∼= Zp and its restriction
on Γ . This notation seems odd here, but one sees that the composite map
G→ Zp

exp−→ Z∗p is nothing but χ, which will be consistent with the axiomatic
setup in §3.4.

Definition 3.23. The operator Θ of Sen associated to the C-representation
is an endomorphism of Wr whose matrix under the basis {e1, · · · , en} is given
by

Θ =
logUγr

logχ(γr)
. (3.8)

One extends Θ by linearity to an endomorphism of W∞ and of W .

Theorem 3.24. Sen’s operator Θ is the unique K∞-linear endomorphism of
W∞ such that, for every ω ∈W∞, there is an open subgroup Γω of Γ satisfying

σ(ω) = [exp(Θ logχ(σ))]ω, for all σ ∈ Γω. (3.9)

Proof. For ω = λ1e1 + · · ·λnen ∈W∞ such that λi ∈ K∞, then λi is fixed by
some Γri

for ri ∈ N. Let Γω = Γr ∩Γr1 ∩ · · · ∩Γrn
. Then for any σ ∈ Γω ⊂ Γr,

σ = γar , a ∈ Zp, hence

Uσ = (Uγr
)a and logχ(σ) = a logχ(γr),

then

exp(Θ logχ(σ)) = exp
(
a

logUγr

logχ(γr)
logχ(γr)

)
= exp logUσ = Uσ.

Thus
σ(ω) = [exp(Θ logχ(σ))]ω, for all σ ∈ Γω.

To prove the uniqueness, if (3.9) holds, let σ ∈ Γr ∩ Γe1 ∩ · · · ∩ Γen , write
σ = γar . For ω ∈Wr, on one hand, the action of σ on ω is given by Uσ under
the basis {e1, · · · , en}; on the other hand, it is given by [exp(Θ logχ(σ))](ω),
so

Uaγr
= Uσ = exp(Θ logχ(σ)),

hence
Θ =

a logUγr

logχ(σ)
=

logUγr

logχ(γr)
.

We have finished the proof. ut
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We have the following remarks of Θ:

Remark 3.25. (1) By the proof of the theorem, one sees that

Θ =
logUσ

logχ(σ)
, for any σ ∈ Γr, (3.10)

thus Sen’s operator Θ does not depend on the choice of γr.
(2) By (3.9), one has

Θ(ω) =
1

logχ(γ)
lim
t→0

p-adically

γt(ω)− ω
t

, for ω ∈W∞. (3.11)

Thus Γ commutes with Θ on W∞ and G commutes with Θ on W .
(3) For ω ∈ W∞, Θ(ω) = 0 if and only if the Γ -orbit of ω is finite (this

is also equivalent to that the stabilizer of ω is an open subgroup of Γ ), as is
easily seen from (2).

(4) Let W ′ be another C-representation and Θ′ be the corresponding Sen
operator. Then the Sen operator for W ⊕W ′ is Θ ⊕ Θ′ and for W ⊗C W ′ is
Θ ⊗ 1 + 1 ⊗ Θ′. If W ′ is a subrepresentation of W then the Sen operator Θ′

is the restriction of Θ to W ′. These could be seen from definition or by (2).
(5) The Sen operator of the representation HomC(W,W ′) is given by f 7→

f ◦Θ−Θ′ ◦ f for f ∈ HomC(W,W ′). To see this, use the Taylor expansion at
t = 0:

γtf(γ−tω)− f(w) = (1 + t log γ)f((1− t log γ)ω) +O(t2)f(ω)− f(ω)
= t(log γ)f(ω)− tf((log γ)ω) +O(t2)f(ω),

now use (2) to conclude.

Example 3.26. Suppose W is of dimension 1 and there is e 6= 0 in W such
that σ(e) = χ(σ)i for all σ ∈ G (in this case W is called of Hodge-Tate type
of dimension 1 and weight i in § 5.1). Then e ∈ W∞, and γt(e) = χ(γ)ite,
from this we have (γt(e)− e)/t→ logχ(γ)ie. Therefore the operator Θ is just
multiplication by i. This example also shows that K-finite elements can have
infinite γ-orbits.

Now let us study more properties about Sen’s operator Θ.

Proposition 3.27. There exists a basis of W∞ with respect to which the ma-
trix of Θ has coefficients in K.

Proof. For any σ ∈ Γ , we know σΘ = Θσ in W∞, thus Uσσ(Θ) = ΘUσ and
hence Θ and σ(Θ) are similar to each other. Thus all invariant factors of Θ
are inside K. By linear algebra, Θ is similar to a matrix with coefficients in
K and we have the proposition. ut
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Remark 3.28. Since locally Uσ is determined by Θ, the K-vector space gener-
ated by the basis as given in the above proposition is stable under the action
of an open subgroup of Γ .

Theorem 3.29. The kernel of Θ is the C-subspace of W generated by the
elements invariant under G, i.e. WG ⊗K C = KerΘ.

Proof. Obviously every elements invariant under G is killed by Θ. Now let
X be the kernel of Θ. It remains to show that X is generated by elements
fixed by G. Since Θ and G commute, X is stable under G and thus is a C-
representation. Therefore we can talk about X∞. Since X∞ ⊗K∞ C = X and
Θ is extended to X by linearity, it is enough to find a K∞-basis {e1, · · · , en}
of X∞ such that ei′s are fixed by Γ . If ω ∈ X∞, then Γ -orbit of ω is finite
(by Remark 3.25 (2)). The action of Γ on X∞ is therefore continuous for the
discrete topology of X∞. So by Hilbert’s theorem 90, there exists a basis of
{e1, · · · , en} of X∞ fixed by Γ . ut

Theorem 3.30. Let W 1 and W 2 be two C-representations, and Θ1 and Θ2 be
the corresponding operators. For W 1 and W 2 to be isomorphic it is necessary
and sufficient that Θ1 and Θ2 should be similar.

Proof. Let W = HomC(W 1,W 2) with the usual action of G and Θ be its Sen
operator. The G-representations W 1 and W 2 are isomorphic means that there
is a C-vector space isomorphism F : W 1 →W 2 such that

σ ◦ F = F ◦ σ

for all σ ∈ G, so F ∈ WG. The operators Θ1 and Θ2 are similar means that
there is an isomorphism f : W 1 →W 2 as C-vector spaces such that

Θ2 ◦ f = f ◦Θ1,

that is f ∈ Ker Θ. By Theorem 3.29, WG ⊗K C = Ker Θ, we see that the
necessity is obvious. For sufficiency, it amounts to that given an isomorphism
f ∈WG ⊗K C, we have to find an isomorphism F ∈WG.

Choose a K-basis {f1, · · · , fm} of WG. The existence of the isomorphism
f shows that there are scalars c1, · · · , cm ∈ C such that:

det(c1f̄1 + · · ·+ cmf̄m) 6= 0.

Here f̄i is the matrix of fi with respect to some fixed basis of W 1 and W 2.
In particular the polynomial det(t1f̄1 + · · · + tmf̄m) in the indeterminates
t1, · · · , tm cannot be identically zero. Since the field K is infinite, there exist
elements λi ∈ K with

det(λ1f̄1 + · · ·+ λmf̄m) 6= 0.

The homomorphism F = λ1f1 + · · ·+ λmfm then has the required property.
ut
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3.3 Sen’s operator Θ and the Lie algebra of ρ(G).

3.3.1 Main Theorem.

Given a Qp-representation V , let ρ : GK → AutQp
V be the corresponding

homomorphism. Let W = V ⊗Qp C. Then some connection of the Lie group
ρ(G) and the operator Θ of W is expected. When the residue field k of K is
algebraically closed, the connection is given by the following theorem of Sen:

Theorem 3.31. The Lie algebra g of ρ(G) is the smallest of the Qp-subspaces
S of EndQp V such that Θ ∈ S ⊗Qp C.

Proof. Suppose dimQp
V = d. Choose a Qp-basis {e1, · · · , ed} of V and let

Uσ be the matrix of ρ(σ) with respect to the ei’s. Let {e′1, · · · , e′d} be a basis
of W∞ (where W = V ⊗Qp C) such that the K-subspace generated by the
e′i’s is stable under an open subgroup Γm of Γ (by Proposition 3.27, such
a basis exists). If U ′ is the cocycle corresponding to the e′i’s, it follows that
U ′σ ∈ GLd(K) for σ ∈ Γm. Let M be the matrix transforming the ei’s into the
e′i’s, one then has M−1Uσσ(M) = U ′σ for all σ ∈ G.

Let Θ be the matrix of Θ with respect to the e′i’s. Put A = MΘM−1,
so that A is the matrix of Θ with respect to the ei’s. For σ close to 1 in Γ
one knows that U ′σ = exp(Θ logχ(σ)), and our assumptions imply that Θ has
coefficients in K.

By duality the theorem is nothing but the assertion that a Qp-linear form
f vanishes on g⇐⇒ the C-extension of f vanishes on Θ. By the local home-
omorphism between a Lie group and its Lie algebra, g is the Qp-subspace of
EndQp V generated by the logarithms of the elements in any small enough
neighborhood of 1 in ρ(G), for example the one given by Uσ ≡ 1(mod pm) for
m = 2. Thus it suffices to prove, for any m = 2:

Claim: f(A) = 0⇐⇒ f(logUσ) = 0 for all Uσ ≡ 1(mod pm).

Let

Gn = {σ ∈ G | Uσ ≡ I and Θ logχ(σ) ≡ 0( mod pn)}, n ≥ 2. (3.12)

Let

G∞ =
∞⋂
n=2

Gn = {σ ∈ G | Uσ = I and χ(σ) = 1}. (3.13)

Let
∨
G = G2/G∞ and

∨
Gm = Gm/G∞ for m = 2. Then

∨
G is a p-adic Lie group

and {
∨
Gm} is a Lie filtration of it. Let L be the fixed field of G∞ in K, by

Proposition 3.8, the fixed field of G∞ in C is L̂, the completion of L. It is clear
that for σ ∈ G∞ we have M−1σ(M) = I, it follows that M has coefficients
in L̂, hence the same to A. From now on we work within L̂, and σ will be a

(variable) element of
∨
G.
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Assume n0 is an integer large enough such that n > n0 implies the formula

U ′σ = exp(Θ logχ(σ)) for all σ ∈
∨
Gn. (3.14)

The statement of our theorem is unchanged if we multiply M by a power of p.
We may therefore suppose that M has integral coefficients. After multiplying
f by a power of p we may assume that f is “integral”, i.e., takes integral
values on integral matrices.

For n > n0, U ′σ ≡ Imod pn, the equation

MUσ = U ′σσ(M) (3.15)

shows then that σ(M) ≡M( mod pn) for σ ∈
∨
Gn. By Ax-Sen’s lemma (Propo-

sition 3.3) it follows that for each n there is a matrix Mn such that

Mn ≡M( mod pn−1), and σ(Mn) = Mn for σ ∈
∨
Gn. (3.16)

Now suppose σ ∈
∨
Gn, with n = 2. We then have

Uσ ≡ I + logUσ, and U ′σ ≡ I + logU ′σ = I + logχ(σ) ·Θ (mod p2n).

Substituting these congruences in (3.15) we get

M +M logUσ ≡ σ(M) + logχ(σ) ·Θσ(M)(mod p2n).

Since logUσ and logχ(σ) are divisible by pn we have by (3.16):

M +Mn logUσ ≡ σ(M) + logχ(σ) ·ΘMn( mod p2n−1). (3.17)

Let r1 and r2 be integers such that pr1−1M−1 and pr2Θ have integral coef-
ficients. Let n > r := 2r1 + r2 − 1. Then Mn is invertible and pr1−1M−1

n is
integral. Multiplying (3.17) on the left by pr1−1M−1

n and dividing by pr1−1

we get

Cn + logUσ ≡ σ(Cn) + logχ(σ) ·M−1
n ΘMn ( mod p2n−r1) (3.18)

where Cn = M−1
n M ≡ I( mod pn−r1). Write An = MnΘM

−1
n , it is fixed by

∨
Gn and

An −A = MnΘ(M−1(M −Mn)M−1
n ) + (Mn −M)ΘM−1 ≡ 0 mod pn−r.

We get
logχ(σ)An ≡ logχ(σ)A( mod p2n−r).

Then we have

(σ − 1)Cn ≡ logUσ − logχ(σ) ·An( mod p2n−r1).



102 3 C-representations and Methods of Sen

Applying f to the above equation, note that f is an extension of some linear
form on Md(Qp), we get

(σ − 1)f(Cn) ≡ f(logUσ)− logχ(σ) · f(An)(mod p2n−r1)

and hence

(σ − 1)f(Cn) ≡ f(logUσ)− logχ(σ) · f(A)(mod p2n−r). (3.19)

We need the following important lemma, whose proof will be given in next
section.

Lemma 3.32. Let G = Gal(L/K) be a p-adic Lie group, {G(n)} be a p-
adic Lie filtration on it. Suppose for some n there is a continuous function
λ : G(n)→ Qp and an element x in the completion of L such that

λ(σ) ≡ (σ − 1)x(mod pm), for all σ ∈ G(n)

and some m ∈ Z. Then there exists a constant c such that

λ(σ) ≡ 0( mod pm−c−1), for all σ ∈ G(n).

Suppose f(A) = 0. By (3.19) and Lemma 3.32, we conclude that f(logUσ) ≡

0(mod p2n−r−c−1) for any σ ∈
∨
Gn, where c is the constant of the lemma

(which depends only on
∨
G). Since σp

n−2 ∈
∨
Gn and logUσpn−2 = pn−2 logUσ

for any σ ∈
∨
G. We conclude that f(logUσ) ≡ 0( mod pn−r−c+1) for all σ ∈

∨
G,

hence f(logUσ) = 0 as desired, since n was arbitrary.

Suppose f(logUσ) = 0 for all σ ∈
∨
G : We wish to show f(A) = 0. Suppose

not, then f(An) 6= 0 and has constant ordinal for large n, dividing (3.19) by
f(A) and using Lemma 3.32, we obtain

logχ(σ) ≡ 0( mod p2n−r−c−1−s)

for large n and all σ ∈
∨
Gn, where s is a constant with psf(A)−1 integral.

Analogous argument as above shows that logχ(σ) = 0 for all σ ∈
∨
G. This is

a contradiction since, as is well known, χ is a non-trivial representation with
infinite image. This concludes the proof of the main theorem. ut

Corollary 3.33. Θ = 0 if and only if ρ(G) is finite.

Proof. By the theorem Θ = 0⇔ g = 0. So we only need to show g = 0⇔ ρ(G)
is finite.

The sufficiency is obvious. For the necessity, g = 0 implies that ρ(G) has
a trivial open subgroup which in turn implies that ρ(G) is finite. ut

Remark 3.34. In general if k is not algebraically closed, one just needs to
replace G by the inertia subgroup and K by the completion of Kur, then the
above theorem and corollary still hold.



3.3 Sen’s operator Θ and the Lie algebra of ρ(G). 103

3.3.2 Application of Sen’s filtration Theorem.

We assume k is algebraically closed.

Lemma 3.35. Let L/K be finite cyclic of p-power degree with Galois group
A = Gal(L/K). Suppose vA > eA(r+1/(p− 1)) for some integer r ≥ 0. Then
pr divides the different DL/K .

Proof. Let pn = [L : K], and for 0 ≤ i ≤ n, let A(i) be the subgroup of order
pi in A, so A = A(n) ⊃ A(n−1) ⊃ · · · ⊃ A(1) ⊃ A(0) = 1. Let vi = vA/A(i)

.
From Corollary 0.80, we get by induction on j:

vj = vA − jeA >
(
r − j +

1
p− 1

)
eA, for 0 ≤ j ≤ r.

By Herbrand’s theorem, we have

Av = A(j), for vj < v ≤ vj−1, 1 ≤ j ≤ r.

Then

vp(DL/K) =
1
eA

∫ ∞
−1

(1− |Av|−1)dv

≥ 1
eA

(∫ vr

−1

(1− |Av|−1)dv +
r∑
j=1

(
1− 1

pj
)
eA

)
≥ 1
eA

(
(1− p−r) 1

p− 1
eA + reA − eA ·

r∑
j=1

1
pj

)
≥r.

Hence pr divides the different DL/K . ut

Proposition 3.36. Suppose G = Gal(L/K) is a p-adic Lie group and that
{G(n)} is the Lie filtration of G. Let Kn be the fixed field of G(n). Then there
is a constant c independent of n such that for every finite cyclic extension
E/Kn such that E ⊂ L, the different DE/Kn

is divisible by p−c[E : Kn].

Proof. Put un = uG/G(n), vn = vG/G(n), and en = eG(n). From Proposi-
tion 0.84, we know that there exists a constant a such that

vn = a+ ne for n large.

By the filtration theorem (Theorem 0.85), we can find an integer b large
enough such that

Ga+ne ⊃ G(n+ b)

for n large.
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Let E/Kn be cyclic of degree ps and n large. Let Gal(E/Kn) = G(n)/H =
A. We have G(n + s − 1) = G(n)p

s−1 * H because Ap
s−1 6= 1. Thus, if

G(n)y ⊃ G(n+ s− 1), then uA ≥ y, because Ay = G(n)yH/H 6= 1.
By Proposition 0.83, we have, for t > 0, with the above choice of a and b:

G(n)un+ten = Gvn+te = Ga+(n+t)e ⊃ G(n+ t+ b).

If s > b+ 1, put t = s− b− 1, then we get vA ≥ y as above, with

y = un + (s− b− 1)en > (s− b− 3 + 1/(p− 1))en.

So if s ≥ b+3, then ps−b−3 = p−(b+3)[E : Kn] divides DE/Kn
by Lemma 3.35.

The same is trivially true if s < b+ 3. Thus one could take c = b+ 3 for large
n, say n ≥ n1, and c = n1 + b+ 3 would then work for all n. ut

Corollary 3.37. TrE/Kn
(OE) ⊂ p−c[E : Kn]OKn

.

Proof. Let [K : Kn] = ps. The proposition states that DE/Kn
⊂ ps−cOE ,

hence OE ⊂ ps−cD−1
E/Kn

. On taking the trace the corollary follows. ut

We now come to the proof of Lemma 3.32:

Proof (Proof of Lemma 3.32). Multiplying λ and x by p−m we may assume
m = 0. Let λ̄ : G(n) → Qp/Zp be the function λ̄(σ) = λ(σ) + Zp. Following
λ̄ by the inclusion Qp/Zp ↪→ L/OL, we see that λ̄ is a 1-coboundary, hence a
1-cocycle, and thus a homomorphism, because G(n) acts trivially on Qp/Zp.

Let H = Ker λ̄ and E be the fixed field of H. For σ ∈ H we have (σ −
1)x ∈ ÔL, by Ax-Sen’s Lemma, there exists an element y ∈ E such that
y ≡ x( mod p−1). Then

λ(σ) ≡ (σ − 1)x ≡ (σ − 1)y (mod p−1), for σ ∈ G(n).

Select σ0 ∈ Gn, such that σ0H generates G(n)/H. Let

λ(σ0) = (σ0 − 1)y + p−1z.

Then z ∈ OE . Taking the trace from E to Kn, we find, using the Corol-
lary 3.37, that

[E : Kn]λ(σ0) ∈ p−c−1[E : Kn]OKn
,

i.e. λ(σ0) ≡ 0(mod p−c−1) and hence λ(σ) ≡ 0(mod p−c−1) for all σ ∈ G(n),
as was to be shown. ut

3.4 Sen’s method.

The method of Sen to classify C-representations in § 3.2 actually can be
generalized to an axiomatic set-up, as proposed by Colmez.
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3.4.1 Tate-Sen’s conditions (TS1), (TS2) and (TS3).

Let G0 be a profinite group and χ : G0 → Z∗p be a continuous group homo-
morphism with open image. Set v(g) = vp(logχ(g)) and H0 = Kerχ.

Suppose Λ̃ is a Zp-algebra and

v : Λ̃ −→ R ∪ {+∞}

satisfies the following conditions:
(i) v(x) = +∞ if and only if x = 0;
(ii) v(xy) ≥ v(x) + v(y);
(iii) v(x+ y) ≥ min(v(x), v(y));
(iv) v(p) > 0, v(px) = v(p) + v(x).

Assume Λ̃ is complete for v, andG0 acts continuously on Λ̃ such that v(g(x)) =
v(x) for all g ∈ G0 and x ∈ Λ̃.

Definition 3.38. The Tate-Sen’s conditions for the quadruple (G0, χ, Λ̃, v)
are the following three conditions (TS1)-(TS3).

(TS1). For all C1 > 0, for all H1 ⊂ H2 ⊂ H0 open subgroups, there exists an
α ∈ Λ̃H1 with

v(α) > −C1 and
∑

τ∈H2/H1

τ(α) = 1. (3.20)

(In Faltings’ terminology, Λ̃/Λ̃H0 is called almost étale.)

(TS2). Tate’s normalized trace maps: there exists a constant C2 > 0 such that
for all open subgroups H ⊂ H0, there exist n(H) ∈ N and (ΛH,n)n≥n(H), an
increasing sequence of sub Zp-algebras of Λ̃H and maps

RH,n : Λ̃H −→ ΛH,n

satisfying the following conditions:

(a) if H1 ⊂ H2, then ΛH2,n = (ΛH1,n)
H2 , and RH1,n = RH2,n on Λ̃H2 ;

(b) for all g ∈ G0, then

g(ΛH,n) = ΛgHg−1,n g ◦RH,n = RgHg−1,n ◦ g;

(c) RH,n is ΛH,n-linear and is equal to identity on ΛH,n;
(d) v(RH,n(x)) ≥ v(x)− C2 if n ≥ n(H) and x ∈ Λ̃H ;
(e) lim

n→+∞
RH,n(x) = x.

(TS3). There exists a constant C3, such that for all open subgroups G ⊂ G0,
H = G ∩H0, there exists n(G) ≥ n(H) such that if n ≥ n(G), γ ∈ G/H and
n(γ) = vp(logχ(γ)) ≤ n, then γ − 1 is invertible on XH,n = (RH,n − 1)Λ̃ and

v((γ − 1)−1x) ≥ v(x)− C3 (3.21)

for x ∈ XH,n.
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Remark 3.39. RH,n ◦RH,n = RH,n, so Λ̃H = ΛH,n ⊕XH,n.

Example 3.40. In § 3.2, we are in the case Λ̃ = C, G0 = GK , v = vp, χ being
the character G0 → Γ

exp−→ Z∗p.
In this case we have H0 = Gal(K/K∞). For any open subgroup H of H0,

let L∞ = K
H

, then L∞ = LK∞ for L disjoint from K∞ over Kn for n � 0.
Let ΛH,n = Ln = LKn and RH,n be Tate’s normalized trace map. Then all
the axioms (TS1), (TS2) and (TS3) are satisfied from results in § 0.4.2.

3.4.2 Almost étale descent

Lemma 3.41. If Λ̃ satisfies (TS1), a > 0, and σ 7→ Uσ is a 1-cocycle from
H, an open subgroup of H0, to GLd(Λ̃), and

v(Uσ − 1) ≥ a for any σ ∈ H,

then there exists M ∈ GLd(Λ̃) such that

v(M − 1) ≥ a

2
, v(M−1Uσσ(M)− 1) ≥ a+ 1.

Proof. The proof is parallel to Lemma 3.9, approximating Hilbert’s Theorem
90.

Fix H1 ⊂ H open and normal such that v(Uσ − 1) ≥ a + 1 + a/2 for
σ ∈ H1, which is possible by continuity. Because Λ̃ satisfies (TS1), we can
find α ∈ Λ̃H1 such that

v(α) ≥ −a/2,
∑

τ∈H/H1

τ(α) = 1.

Let S ⊂ H be a set of representatives of H/H1, denote MS =
∑
σ∈S

σ(α)Uσ, we

have MS − 1 =
∑
σ∈S

σ(α)(Uσ − 1), this implies v(MS − 1) ≥ a/2 and moreover

M−1
S =

+∞∑
n=0

(1−MS)n,

so we have v(M−1
S ) ≥ 0 and MS ∈ GLd(Λ̃).

If τ ∈ H1, then Uστ − Uσ = Uσ(σ(Uτ )− 1). Let S′ ⊂ H be another set of
representatives of H/H1, so for any σ′ ∈ S′, there exists τ ∈ H1 and σ ∈ S
such that σ′ = στ , so we get

MS −MS′ =
∑
σ∈S

σ(α)(Uσ − Uστ ) =
∑
σ∈S

σ(α)Uσ(1− σ(Uτ )),

thus
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v(MS −MS′) ≥ a+ 1 + a/2− a/2 = a+ 1.

For any τ ∈ H,

Uττ(MS) =
∑
σ∈S

τσ(α)Uττ(Uσ) = MτS .

Then
M−1
S Uττ(MS) = 1 +M−1

S (MτS −MS),

with v(M−1
S (MτS − MS)) ≥ a + 1. Take M = MS for any S, we get the

result. ut

Corollary 3.42. Under the same hypotheses as the above lemma, there exists
M ∈ GLd(Λ̃) such that

v(M − 1) ≥ a/2, M−1Uσσ(M) = 1,∀ σ ∈ H.

Proof. Repeat the lemma (a 7→ a+1 7→ a+2 7→ · · · ), and take the limits. ut

3.4.3 Decompletion

Lemma 3.43. Assume given δ > 0, b ≥ 2C2 + 2C3 + δ, and H ⊂ H0 is open.
Suppose n ≥ n(H), γ ∈ G/H with n(γ) ≤ n, U = 1 + U1 + U2 with

U1 ∈ Md(ΛH,n), v(U1) ≥ b− C2 − C3

U2 ∈ Md(Λ̃H), v(U2) ≥ b′ ≥ b.

Then, there exists M ∈ GLd(Λ̃H), v(M − 1) ≥ b− C2 − C3 such that

M−1Uγ(M) = 1 + V1 + V2,

with

V1 ∈ Md(ΛH,n), v(V1) ≥ b− C2 − C3,

V2 ∈ Md(Λ̃H), v(V2) ≥ b+ δ.

Proof. Using (TS2) and (TS3), one gets U2 = RH,n(U2) + (1− γ)V , with

v(RH,n(U2)) ≥ v(U2)− C2, v(V ) ≥ v(U2)− C2 − C3.

Thus,

(1 + V )−1Uγ(1 + V ) = (1− V + V 2 − · · · )(1 + U1 + U2)(1 + γ(V ))
= 1 + U1 + (γ − 1)V + U2 + (terms of degree ≥ 2)

Let V1 = U1 +RH,n(U2) ∈ Md(ΛH,n) and W be the terms of degree ≥ 2. Thus
v(W ) ≥ b+ b′ − 2C2 − 2C3 ≥ b′ + δ. So we can take M = 1 + V, V2 = W . ut
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Corollary 3.44. Keep the same hypotheses as in Lemma 3.43. Then there
exists M ∈ GLd(Λ̃H), v(M − 1) ≥ b − C2 − C3 such that M−1Uγ(M) ∈
GLd(ΛH,n).

Proof. Repeat the lemma (b 7→ b+ δ 7→ b+ 2δ 7→ · · · ), and take the limit. ut

Lemma 3.45. Suppose H ⊂ H0 is an open subgroup, i ≥ n(H), γ ∈ G/H,
n(γ) ≤ i and B ∈ GLd(Λ̃H). If there exist V1, V2 ∈ GLd(ΛH,i) such that

v(V1 − 1) > C3, v(V2 − 1) > C3, γ(B) = V1BV2,

then B ∈ GLd(ΛH,i).

Proof. Take C = B − RH,i(B). We have to prove C = 0. Note that C has
coefficients in XH,i = (1 − RH,i)Λ̃H , and RH,i is ΛH,i-linear and commutes
with γ. Thus,

γ(C)− C = V1CV2 − C = (V1 − 1)CV2 + V1C(V2 − 1)− (V1 − 1)C(V2 − 1)

Hence, v(γ(C) − C) > v(C) + C3. By (TS3), this implies v(C) = +∞, i.e.
C = 0. ut

3.4.4 Applications to p-adic representations

Proposition 3.46. Assume Λ̃ satisfying (TS1), (TS2) and (TS3). Let σ 7→
Uσ be a continuous cocycle from G0 to GLd(Λ̃). If G ⊂ G0 is an open normal
subgroup of G0 such that v(Uσ − 1) > 2C2 + 2C3 for any σ ∈ G. Set H =
G ∩H0, then there exists M ∈ GLd(Λ̃) with v(M − 1) > C2 + C3 such that

σ 7−→ Vσ = M−1Uσσ(M)

satisfies Vσ ∈ GLd(ΛH,n(G)) and Vσ = 1 if σ ∈ H.

Proof. Let σ 7→ Uσ be a continuous 1-cocycle on G0 with values in GLd(Λ̃).
Choose an open normal subgroup G of G0 such that

inf
σ∈G

v(Uσ − 1) > 2(C2 + C3).

By Corollary 3.42, there exists M1 ∈ GLd(Λ̃), v(M1 − 1) > C2 + C3 such
that σ 7→ U ′σ = M−1

1 Uσσ(M1) is trivial in H = G ∩H0. In particular, U ′σ has
values in GLd(Λ̃H).

Now we pick γ ∈ G/H with n(γ) = n(G). In particular, we want n(G) big
enough so that γ is in the center of G0/H. Indeed, the center is open, since
in the exact sequence:

1→ H0/H → G0/H → G0/H0 → 1,
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G0/H0 ' Zp × (finite), and H0/H is finite. So we are able to choose such an
n(G).

Then we have v(U ′γ − 1) > 2(C2 +C3), and by Corollary 3.44, there exists
M2 ∈ GLd(Λ̃H) satisfying

v(M2 − 1) > C2 + C3 and M−1
2 U ′γγ(M2) ∈ GLd(ΛH,n(G)).

Take M = M1 ·M2, then the cocycle

σ 7→ Vσ = M−1Uσσ(M)

is a cocycle trivial on H with values in GLd(Λ̃H), and we have

v(Vγ − 1) > C2 + C3 and Vγ ∈ GLd(ΛH,n(G)).

This implies Vσ comes by inflation from a cocycle on G0/H.
The last thing we want to prove is Vτ ∈ GLd(ΛH,n(G)) for any τ ∈ G0/H.

Note that γτ = τγ as γ is in the center, so

Vττ(Vγ) = Vτγ = Vγτ = Vγγ(Vτ )

which implies γ(Vτ ) = V −1
γ Vττ(Vγ). Apply Lemma 3.45 with V1 = V −1

γ , V2 =
τ(Vγ), then we obtain what we want. ut

Proposition 3.47. Let T be a Zp-representation of G0 of rank d, k ∈ N,
v(pk) > 2C2 + 2C3, and suppose G ⊂ G0 is an open normal subgroup acting
trivially on T/pkT , and H = G∩H0. Let n ∈ N, n ≥ n(G). Then there exists
a unique DH,n(T ) ⊂ Λ̃⊗ T , a free ΛH,n-module of rank d, such that:

(1) DH,n(T ) is fixed by H, and stable by G0;
(2) Λ̃⊗ΛH,n

DH,n(T ) ∼−→ Λ̃⊗ T ;
(3) there exists a basis {e1, . . . , ed} of DH,n over ΛH,n such that if γ ∈

G/H, then v(Vγ − 1) > C3, Vγ being the matrix of γ.

Proof. This is a translation of Proposition 3.46, by the correspondence

Λ̃-representations of G0 ←→ H1(G0,GLd(Λ̃)).

Let {v1, · · · , vd} be a Zp-basis of T , this is also regarded as a Λ̃-basis of Λ̃⊗T ,
which is a Λ̃-representation of G0. Let σ 7→ Uσ be the corresponding cocycle
from G0 to GLd(Zp) ↪→ GLd(Λ̃). Then G is a normal subgroup of G0 such
that for every σ ∈ G, v(Uσ − 1) > 2C2 + 2C3. Therefore the conditions in
Proposition 3.46 are satisfied. Then there exists M ∈ GLd(Λ̃), v(M − 1) >
C2 + C3, such that σ 7→ Vσ = M−1Uσσ(M) satisfies that Vσ ∈ GLd(ΛH,n(G))
and Vσ = 1 for σ ∈ H.

Now let (e1, · · · ed) = (v1, · · · , vd)M . Then {e1, · · · , ed} is a basis of Λ̃×T
with corresponding cocycle Vσ. For n ≥ n(G), let DH,n(T ) be the free ΛH,n-
module generated by the ei’s. Clearly (1) and (2) are satisfied. Moreover, if
γ ∈ G/H,
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v(Vγ−1) = v(M−1(Uγ−1)M+M−1Uγ(γ−1)(M−1)) ≥ v(M−1) > C2+C3 > C3.

For the uniqueness, suppose D1 and D2 both satisfy the condition, let
{e1, · · · , ed} and {e′1, · · · , e′d} be the basis of D1 and D2 respectively as given
in (3). Let Vγ and Wγ be the corresponding cocycles, let P be the base change
matrix of the two bases. Then

Wγ = P−1Vγγ(P ) ⇒ γ(P ) = V −1
γ PWγ .

one uses Lemma 3.45, then P ∈ GLd(ΛH,n(G)) and D1 = D2. ut

Remark 3.48. H0 acts through H0/H (which is finite) on DH,n(T ). If ΛH,n is
étale over ΛH0,n (the case in applications), and thenDH0,n(T ) = DH,n(T )(H0/H),
is locally free over ΛH0,n (in most cases it is free), and

ΛH,n
⊗

ΛH0,n

DH0,n(T ) ∼−→ DH,n(T ). (3.22)

3.5 C-admissible representations

3.5.1 Notations for the rest of the book.

From now on to the rest of the book, if without further notice, we fix the
following notations.

Let K be a p-adic field. Let OK be its ring of integers, and mK be the
maximal ideal ofOK and k be its residue field, which is perfect of characteristic
p > 0. W = W (k) is the ring of Witt vectors and K0 = FracW = W [1/p] is
its quotient field. We know that

rankW OK = [K : K0] = eK = vK(p)

and if π is a generator of mK , then 1, π, · · · , πeK−1 is a basis of OK over W
as well as K over K0. Let σ be the Frobenius map F as in § 0.2.1 on K0, then

σ(a) = ap (mod pW ) if a ∈W.

Let K be an algebraic closure over K.
For any subfield L of K containing K0, set GL = Gal(K/L). Let C = K̂.

By continuity, the Galois group GK0 , hence also GK , acts on C and

CGK = K.

From now on, v will be always the valuation of C or any subfield such that
v(p) = 1, i.e. v = vp. Then v(π) = 1

eK
.

For any subfield L of C, we denote

• OL = {x ∈ L | v(x) ≥ 0};



3.5 C-admissible representations 111

• mL = {x ∈ L | v(x) > 0};
• kL = OL/mL.

Denote by L̂ the closure of L in C, that is OL̂ = lim←−
n≥1

OL/pnOL. We have

L̂ = OL̂[ 1p ] and kL̂ = kL. We know that kK = kC = k̄, where k̄ is an algebraic
closure of k. Let Gk = Gal(k̄/k), IK be the inertia subgroup of GK , then

1→ IK → GK → Gk → 1

is exact.

3.5.2 K-admissible p-adic representations

Note that K is a topological field on which GK acts continuously.

Definition 3.49. A K-representation X of GK is a K-vector space of finite
dimension together with a continuous and semi-linear action of GK .

For X a K-representation, the map

αX : K ⊗K XGK → X

is always injective. X is called trivial if αX is an isomorphism.

Proposition 3.50. X is trivial if and only if the action of GK is discrete.

Proof. The sufficiency is because of Hilbert Theorem 90. Conversely if X is
trivial, there is a basis {e1, · · · , ed} of X over K, consisting of elements of

XGK . For any x =
d∑
i=1

λiei ∈ X, we want to prove Gx = {g ∈ G| g(x) = x} is

an open subgroup of G. Because of the choice of ei’s, g(x) =
d∑
i=1

g(λi)ei, so

Gx =
d⋂
i=1

{g ∈ G | g(λi) = λi} :=
d⋂
i=1

Gλi
,

each λi ∈ K is algebraic over K, so Gλi is open, then the result follows. ut

Definition 3.51. If V is a p-adic representation of GK , V is called K-
admissible if K ⊗Qp

V is trivial as a K-representation.

Let {v1, · · · , vd} be a basis of V over Qp. We still write vi = 1⊗ vi when
they are viewed as a basis of K⊗Qp

V over K. Then by Proposition 3.50, that
V is K-admissible is equivalent to that Gvi = {g ∈ G | g(vi) = vi} is an open
subgroup of G for all 1 ≤ i ≤ d, and it is also equivalent to that the kernel of

ρ : GK −→ AutQp
(V ),

which equals
d⋂
i=1

Gvi
, is an open subgroup.

We thus get
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Proposition 3.52. A p-adic representation of GK is K-admissible if and only
if the action of GK is discrete.

We can do a little further. Let Kur be the maximal unramified extension
of K contained in K, P = K̂ur the completion in C, and P the algebraic
closure of P in C. Clearly P is stable under GK , and Gal(P/P ) = IK .

Set P0 = K̂ur
0 , then P = KP0 and [P : P0] = eK .

Question 3.53. (1) What does it mean for a P -representation of GK to be
trivial?

(2) What are the p-adic representations of GK which are P -admissible?

Proposition 3.54. (1) The answer to Q1, i.e., a P -representation of GK is
trivial if and only if the action of IK is discrete.

(2) A p-adic representation of GK is P -admissible if and only if the action
of IK is discrete.

Remark 3.55. By the above two propositions, then if V is a p-adic represen-
tation of GK , and ρ : GK → AutQp(V ), then

V is K-admissible⇐⇒ Ker ρ is open in GK ,

V is P -admissible⇐⇒ Ker ρ ∩ IK is open in IK .

Proof. Obviously (2) is a consequence of (1), so we only prove (1).
The condition is necessary since if X is a P -representation of GK , then X

is trivial if and only if X ∼= P
d

with the natural action of GK .
We have to prove it is sufficient. Suppose X is a P -representation of GK

of dimension d with discrete action of IK . We know that P
IK = P , and

P ⊗P XIK −→ X

is an isomorphism by Hilbert Theorem 90. Set Y = XIK , because GK/IK =
Gk, Y is a P -representation of Gk. If P ⊗K Y Gk → Y is an isomorphism,
since XGK = Y Gk , then P ⊗K XGK → X is also an isomorphism. Thus it is
enough to prove that any P -representation Y of Gk is trivial, that is, to prove
that P ⊗K Y Gk → Y is an isomorphism.

But we know that any P0-representation of Gk is trivial by Proposi-
tion 2.30: we let

E = k, OE = W, E = K0, Eur = Kur
0 ,

then Êur = P0 and any Êur-representation of GE is trivial. Note that P = KP0

and [P : P0] = eK , any P -representation Y of dimension d of Gk can be viewed
as a P0-representation of dimension eKd, and

P ⊗K Y Gk = P0 ⊗K0 Y
Gk
∼→ Y,

so we get the result. ut
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3.5.3 C-admissible representations.

We can now use Sen’s results to study C-admissible representations.

Proposition 3.56. A p-adic representation V of GK is C-admissible if and
only if the action of IK on V is discrete.

Proof. Clearly, the condition is sufficient because as P ⊂ C, any representa-
tion which is P -admissible is C-admissible.

For V a p-adic representation of GK , suppose {v1, · · · , vd} is a basis of V
over Qp, V is C-admissible if and only if there exist a C-basis {e1, · · · , ed} ∈

W = C ⊗Qp
V , ej =

d∑
i=1

cij ⊗ vi, satisfying that g(ej) = ej for all g ∈ GK .

Thus W is trivial and Sen’s operator ΘW of W is 0, by Sen (Corollary 3.33),
then ρ(IK) is finite. ut

As a special case of this proposition, we consider any continuous homo-
morphism η : GK → Z∗p, and let Qp(η) be the Qp-representation obtained by
giving Qp the action of Gk via η. Set C(η) = C ⊗Qp

Qp(η), Tate proved that

Corollary 3.57.

C(η)GK

{
= 0, if η(IK) is not finite,
∼= K, if η(IK) is finite.

(3.23)

Proof. One notes that the C-representation C(η) is admissible if and only if
C(η)GK , as a K-vector space of dimension ≤ 1, must be 1-dimensional and
hence is isomorphic to K. ut





4

The ring R and (ϕ, Γ )-module

4.1 The ring R

4.1.1 The ring R(A).

Let A be a commutative ring, and let p be a prime number. We know that A
is of characteristic p if the kernel of Z→ A is generated by p; such a ring can
be viewed as an Fp-algebra. If A is of characteristic p, the absolute Frobenius
map is the homomorphism

ϕ : A→ A, a 7→ ap.

If ϕ is an isomorphism, the ring A is perfect. If ϕ is injective, then A is
reduced, that is, there exists no nontrivial nilpotent element, and vice versa.
If k is perfect, we denote by σ the absolute Frobenius on k and its induced
Frobenius on W (k) and on K0 = W (k)[ 1p ].

Definition 4.1. Assume A is of characteristic p, we define

R(A) := lim←−
n∈N

An, (4.1)

where An = A and the transition map is ϕ. Then an element x ∈ R(A) is a
sequence x = (xn)n∈N satisfying xn ∈ A, xpn+1 = xn.

Proposition 4.2. The ring R(A) is perfect.

Proof. For any x = (xn)n∈N, x = (xn+1)
p
n∈N, and xp = 0 implies xpn = xn+1 =

0 for any n ≥ 1, then x = 0. ut

For any n, consider the projection map

θn : R(A) −→ A
(xn)n∈N 7−→ xn.
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If A is perfect, each θn is an isomorphism; A is reduced, then θ0 (hence θn) is
injective and the image

θm(R(A)) =
⋂
n≥m

ϕn(A).

If A is a topological ring, then we can endow R(A) with the topology of
the inverse limit. In what follows, we are going to apply this to the case that
the topology of A is the discrete topology.

Now let A be a ring, separated and complete for the p-adic topology, that
is, the canonical map A → lim←−

n∈N
A/pnA is an isomorphism. We consider the

ring R(A/pA).

Proposition 4.3. There exists a bijection between R(A/pA) and the set

S = {(x(n))n∈N | x(n) ∈ A, (x(n+1))p = x(n)}.

Proof. Take x ∈ R(A/pA), that is,

x = (xn)n∈N, xn ∈ A/pA and xpn+1 = xn.

For any n, choose a lifting of xn in A, say x̂n, we have

x̂pn+1 ≡ x̂n mod pA.

Note that for m ∈ N, m ≥ 1, α ≡ βmod pmA, then

αp ≡ βp mod pm+1A,

thus for n,m ∈ N, we have

x̂p
m+1

n+m+1 ≡ x̂
pm

n+m mod pm+1A.

Hence for every n, lim
m→+∞

x̂p
m

n+m exists in A, and the limit is independent of

the choice of the liftings. We denote

x(n) = lim
m→+∞

x̂p
m

n+m.

Then x(n) is a lifting of xn, (x(n+1))p = x(n) and x 7→ (x(n))n∈N defines a map

R(A/pA) −→ S.

On the other hand the reduction modulo p from A to A/pA naturally induces
the map S → R(A/pA), (x(n))n∈N 7→ (x(n) mod pA)n∈N. One can easily check
that the two map are inverse to each other. ut
Remark 4.4. In the sequel, we shall use the above bijection to identifyR(A/pA)
to the set S. Then any element x ∈ R(A/pA) can be written in two ways

x = (xn)n∈N = (x(n))n∈N, xn ∈ A/pA, x(n) ∈ A. (4.2)

If x = (x(n)), y = (y(n)) ∈ R(A/pA), then

(xy)(n) = (x(n)y(n)), (x+ y)(n) = lim
m→+∞

(x(n+m) + y(n+m))p
m

. (4.3)
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4.1.2 Basic properties of the ring R.

We have just introduced the ring R(A). The most important case for us is
that A = OL with L being a subfield of K containing K0. Identify OL/pOL =
OL̂/pOL̂, then the ring

R(OL/pOL) = R(OL̂/pOL̂) = {x = (x(n))n∈N | x(n) ∈ OL̂, (x
(n+1))p = x(n)}.

In particular, we set

Definition 4.5. R := R(OK/pOK) = R(OC/pOC).

Recall v = vp is the valuation on C normalized by v(p) = 1. We define
vR(x) = v(x) := v(x(0)) on R.

Proposition 4.6. The ring R is a complete valuation ring with the valuation
given by v. It is perfect of characteristic p. Its maximal ideal mR = {x ∈ R |
v(x) > 0} and residue field is k̄.

The fraction field FrR of R is a complete nonarchimedean perfect field of
characteristic p.

Proof. We have v(R) = Q≥0 ∪ {+∞} as the map R→ OC , x 7→ x(0) is onto.
We also obviously have

v(x) = +∞⇔ x(0) = 0⇔ x = 0,

and
v(xy) = v(x)v(y).

To see that v is a valuation, we just need to verify v(x+ y) ≥ min{v(x), v(y)}
for all x, y ∈ R.

We may assume x, y 6= 0, then x(0), y(0) 6= 0. Since v(x) = v(x(0)) =
pnv(x(n)), there exists n such that v(x(n)) < 1, v(y(n)) < 1. By definition,
(x+ y)(n) ≡ x(n) + y(n) (mod p), so

v((x+ y)(n)) ≥ min{v(x(n)), v(y(n)), 1}
≥ min{v(x(n)), v(y(n))},

it follows that v(x+ y) ≥ min{v(x), v(y)}.
Since

v(x) ≥ pn ⇔ v(x(n)) ≥ 1⇔ xn = 0,

we have
{x ∈ R | v(x) ≥ pn} = Ker (θn : R→ OC/pOC).

So the topology defined by the valuation is the same as the topology of inverse
limit, and therefore is complete. Because R is a valuation ring, R is a domain
and thus we may consider FrR, the fraction field of R. Then

FrR = {x = (x(n))n∈N | x(n) ∈ C, (x(n+1))p = x(n)}.
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The valuation v extends to the fraction field FrR by the same formula v(x) =
v(x(0)). FrR is a complete nonarchimedean perfect field of characteristic p > 0
with the ring of integers

R = {x ∈ FrR | v(x) ≥ 0}

whose maximal ideal is mR = {x ∈ FrR | v(x) > 0}.
For the residue field R/mR, one can check that the map

R
θ0−→ OK/pOK −→ k̄

is onto and its kernel is mR, so the residue field of R is k̄. ut

Because k̄ is perfect and R is complete, there exists a unique section s :
k̄ → R of the map R→ k̄, which is a homomorphism of rings.

Proposition 4.7. The section s is given by

a ∈ k̄ −→ ([ap
−n

])n∈N

where [ap
−n

] = (ap
−n

, 0, 0, · · · ) ∈ OKur
0

is the Teichmüller representative of
ap

−n

.

Proof. One can check easily ([ap
−(n+1)

])p = [ap
−n

] for every n ∈ N, thus
([ap

−n

])n∈N is an element ã in R, and θ0(ã) = [a] whose reduction mod p is
just a. We just need to check a 7→ ã is a homomorphism, which is obvious. ut

Proposition 4.8. FrR is algebraically closed.

Proof. As FrR is perfect, it suffices to prove that it is separably closed, which
means that if a monic polynomial P (X) = Xd+ad−1X

d−1 + · · ·+a1X+a0 ∈
R[X] is separable, then P (X) has a root in R.

Since P is separable, there exist U0, V0 ∈ FrR[X] such that

U0P + V0P
′ = 1.

Choose π ∈ R, such that v(π) = 1(for example, take π = (p(n))n∈N, p(0) = p),
then we can find m ≥ 0, such that

U = πmU0 ∈ R[X], V = πmV0 ∈ R[X],

and UP + V P ′ = πm.

Claim: For any n ∈ N, there exists x ∈ R, such that v(P (x)) ≥ pn.
For fixed n, consider θn : R � OK/p, recall

Ker θn = {y ∈ R | v(y) ≥ pn},

we just need to find x ∈ R such that θn(P (x)) = 0. Let
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Q(X) = Xd + · · ·+ α1X + α0 ∈ OK [X],

where αi is a lifting of θn(ai). Since K is algebraic closed, let u ∈ OK be a
root of Q(X), and ū be its image in OK/pOK , then any x ∈ R such that
θn(x) = ū satisfies θn(P (x)) = 0. This proves the claim.

Take n0 = 2m + 1, we want to construct a sequence (xn)n≥n0 of R such
that

v(xn+1 − xn) ≥ n−m, and P (xn) ∈ πnR,

then lim
n→+∞

xn exists, and it will be a root of P (X).

We construct (xn) inductively. We use the claim to construct xn0 . Assume
xn is constructed. Put

P [j] =
1
j!
P (j)(X) =

∑
i≥j

(
i

j

)
aiX

i−j ,

then
P (X + Y ) = P (X) + Y P ′(X) +

∑
j≥2

Y jP [j](X).

Write xn+1 = xn + y, then

P (xn+1) = P (xn) + yP ′(xn) +
∑
j≥2

yjP [j](xn). (4.4)

If v(y) ≥ n−m, then v(yjP [j](xn)) ≥ 2(n−m) ≥ n+ 1 for j ≥ 2, so we only
need to find a y such that

v(y) ≥ n−m, and v(P (xn) + yP ′(xn)) ≥ n+ 1.

By construction, v(U(xn)P (xn)) ≥ n > m, so

v
(
V (xn)P ′(xn)

)
= v
(
πm − U(xn)P (xn)

)
= m,

which implies that v(P ′(xn)) ≤ m. Take y = − P (xn)
P ′(xn) , then v(y) ≥ n − m,

and we get xn+1 as required. ut

4.1.3 The multiplicative group FrR∗.

Lemma 4.9. There is a canonical isomorphism of Z-modules

FrR∗ ∼= Hom(Z[1/p], C∗).

Proof. Given a homomorphism f : Z[1/p] → C∗, write x(n) = f(p−n), then
(x(n+1))p = x(n), so x = (x(n))n∈N ∈ R, thus we get a canonical homomor-
phism

Hom(Z[1/p], C∗) −→ FrR∗.

One can easily check that this is an isomorphism. ut
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From now on, we identify FrR∗ with Hom(Z[1/p], C∗) by the above canon-
ical isomorphism.

Denote by UR ⊂ FrR∗ the group of the units of R. Since for x ∈ R,
x ∈ UR ⇔ x(0) ∈ O∗C , we get

UR = Hom(Z[1/p],O∗C).

Let W (k̄) be the ring of Witt vectors of k̄. Since W (k̄) ⊂ OC , we get an
inclusion k̄∗ ↪→ O∗. Let U+

C = 1 + mC , then O∗C = k̄∗ × U+
C , and therefore

UR = Hom(Z[1/p],O∗C)
= Hom(Z[1/p], k̄∗)×Hom(Z[1/p], U+

C ).

In k̄, any element has exactly one p-th root, so Hom(Z[1/p], k̄∗) = k̄∗. Similarly
we have

U+
R = {x ∈ R | x(n) ∈ U+

C } = Hom(Z[1/p], U+
C ),

therefore we get the factorization

UR = k̄∗ × U+
R .

Set U1
R = {x ∈ R | v(x−1) ≥ 1}, then (U1

R)p
n

= {x ∈ U1
R | v(x−1) ≥ pn},

and
U1
R
∼−→ lim←−

n∈N
U1
R/(U

1
R)p

n

is an isomorphism and a homeomorphism of topological groups. So we may
consider U1

R as a Zp-module which is torsion free.
For x ∈ U+

R , v(x − 1) > 0, then v(xp
n − 1) = pnv(x − 1) ≥ 1 for n large

enough. Conversely, any element x ∈ U1
R has a unique pn-th root in U+

R . We
get

Qp ⊗Zp
U1
R −→ U+

R

p−n ⊗ u 7−→ up
−n

is an isomorphism.
To summarize, we have

Proposition 4.10. The sequence

0→ UR → FrR∗ v→ Q→ 0 (4.5)

is exact and
(1) FrR∗ = Hom(Z[1/p], C∗);
(2) UR = Hom(Z[1/p],O∗C) = k̄∗ × U+

R ;
(3) U+

R = Hom(Z[1/p], U+
C ) = Qp ⊗Zp

U1
R;

(4) U1
R = {x ∈ R | v(x− 1) ≥ 1} ∼−→ lim←−

n∈N
U1
R/(U

1
R)p

n

.



4.2 The action of Galois groups on R 121

4.2 The action of Galois groups on R

4.2.1 The action of Galois groups.

As in the previous chapters, we let W = W (k), K0 = FracW . The group
GK0 = Gal(K/K0) acts on R and FrR in the natural way.

Proposition 4.11. Let L be an extension of K0 contained in K and let H =
Gal(K/L). Then

RH = R(OL/pOL), (FrR)H = Frac(R(OL/pOL)).

The residue field of RH is kL = k̄H , the residue field of L.

Proof. Assume x ∈ RH(resp. FrRH). Write

x = (x(n))n∈N, x
(n) ∈ OC(resp. C).

For h ∈ H, h(x) = (h(x(n)))n∈N. Hence

x ∈ RH(resp. FrRH)⇐⇒ x(n) ∈ (OC)H(resp. CH), ∀ n ∈ N,

then the first assertion follows from the fact

CH = L̂, (OC)H = OCH = OL̂ = lim−→
n

OL/pnOL.

The map k̄ ↪→ R � k̄ induces the map kL ↪→ RH � kL, and the composition
map is nothing but the identity map, so the residue field of RH is kL. ut
Proposition 4.12. If v(L∗) is discrete, then

R(OL/pOL) = RH = kL.

This is the case if L is a finite extension of K0.

Proof. From the proof of last proposition, kL ⊂ RH = R(OL/pOL), it remains
to show that

x = (x(n))n∈N ∈ RH , v(x) > 0 =⇒ x = 0.

We have v(x(n)) = p−nv(x(0)), but v(L̂∗) = v(L∗) is discrete, so v(x) =
v(x(0)) = +∞, which means that x = 0. ut

4.2.2 R(Kcyc
0 /pOKcyc

0
), ε and π.

Let Kcyc
0 be the subfield of K obtained by adjoining to K0 the pn-th roots of

1 for all n. Take (ε(n))n≥0 such that

ε(0) = 1, ε(1) 6= 1, and (ε(n+1))p = ε(n) for n ≥ 1.

Then
Kcyc

0 =
⋃
n∈N

K0(ε(n)).

The question is: what is R(OKcyc
0
/pOKcyc

0
)?

First its residue field is k.
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Lemma 4.13. The element ε = (ε(n))n∈N is a unit of R(OKcyc
0
/pOKcyc

0
).

Proof. Write εn the image of ε(n) in OKcyc
0
/pOKcyc

0
. Put π = ε − 1, then

π(0) = lim
m→+∞

(ε(m)− 1)p
m

, since ε(0)− 1 = 0, and v(ε(m)− 1) = 1
(p−1)pm−1 for

m ≥ 1, we have v(π) = v(π(0)) = p
p−1 > 1. Thus the element ε = (ε(n))n∈N is

a unit of R(OKcyc
0
/pOKcyc

0
). ut

Remark 4.14. From now on, we set ε and π = ε− 1 as in the above Lemma.

Proposition 4.15. We have a short exact sequence

0 −→ Zp(1) t7→ε−−−→ U1
R

u 7→u(0)−1−−−−−−−→ C −→ 0

which respects GK0-action and induces a short exact sequence

0 −→ Qp(1) t7→ε−−−→ U+
R −→ C −→ 0.

Proof. This is an easy exercise. ut

Set H = Gal(K/Kcyc
0 ), then RH = R(OKcyc

0
/pOKcyc

0
) by Proposition 4.11.

Since π ∈ RH and v(π) = vp(π(0)) = p
p−1 > 1, k ⊂ RH , and RH is complete,

then
k[[π]] ⊂ RH and k((π)) ⊂ (FrR)H .

Since for every x = (x(n))n∈N ∈ RH , x = yp with y = (x(n+1))n∈N, RH and
(FrR)H are both perfect and complete, we get

̂k[[π]]rad ⊂ RH , ̂k((π))rad ⊂ (FrR)H .

Theorem 4.16. We have

̂
k[[π]]rad = RH ,

̂
k((π))rad = (FrR)H .

Moreover, for the projection map

θm : R→ OK/pOK , θm((xn)n∈N ) = xm, (m ∈ N)

then
θm(RH) = OKcyc

0
/pOKcyc

0
.

Proof. Set E0 = k((π)), F = Erad
0 , L = Kcyc

0 =
⋃
n≥1

K0(ε(n)). It suffices to

check that OF̂ is dense in RH , or even that OF is dense in RH . Since RH is
the inverse limit of OL/pOL, both assertions follow from

θm(OF ) = OL/pOL for all m ∈ N.

So it suffices to show that OL/pOL ⊂ θm(OF ), for all m.
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Set πn = ε(n) − 1, then

OK0 [ε
(n)] = W [πn], OL =

∞⋃
n=0

W [πn].

Write π̄n = εn − 1, the image of πn in OL/pOL, then OL/pOL is generated
as a k-algebra by π̄n’s. Since k ⊂ OE0 , we are reduced to prove

π̄n ∈ θm(OF ) = θm(k[[π]]rad), for all m,n ∈ N.

For all s ∈ Z, πp
−s ∈ k[[π]]rad, and

πp
−s

= εp
−s − 1 = (ε(n+s))n∈N − 1

= (εn+s − 1)n∈N,

where ε(n) = 1 if n < 0. Since εn+s − 1 = π̄n+s for n+ s ≥ 0, let s = n−m,
we get

π̄n = θm(πp
m−n

) ∈ θm(k[[π]]rad).

This completes the proof. ut

4.2.3 A fundamental theorem.

Theorem 4.17. Let Es0 be the separable closure of E0 = k((π)) in FrR,
then Es0 is dense in FrR, and is stable under GK0 . Moreover, for any
g ∈ Gal(K/Kcyc

0 ),
g|Es

0
∈ Gal(Es0/E0),

and the map Gal(K/Kcyc
0 )→ Gal(Es0/E0) is an isomorphism.

Proof. As Es0 is separably closed, Ês0 is algebraically closed. Let E0 be the
algebraic closure of E0 in FrR. It is enough to check that E0 is dense in FrR
for the first part. In other words, we want to prove that OE0

is dense in R.
As R is the inverse limit of OK/pOK , it is enough to show that

θm(OE0
) = OK/pOK , for all m ∈ N.

As E0 is algebraically closed, it is enough to show that

θ0(OE0
) = OK/pOK .

Since OK = lim−→
[L:K]<+∞
L/K0 Galois

OL, it is enough to check that for any finite Galois

extension L of K0,
OL/pOL ⊂ θm(OE0

).

Let K0,n = K0(ε(n)) and Ln = K0,nL, then Ln/K0,n is Galois with Galois
group Jn = Gal(Ln/K0,n) and for n large, we have Jn = Jn+1 := J . Since
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k̄ ⊂ OE0
, replacing K0 by a finite unramified extension, we may assume

Ln/K0,n is totally ramified for any n.
Let νn be a generator of the maximal ideal of OLn

, then OLn
= OK0,n

[νn]
since Ln/K0,n is totally ramified. Since θ0(OE0

) ⊃ OK0,n
/pOK0,n

, it is enough
to check that there exists n such that ν̄n ∈ θ0(OE0

), where ν̄n is the image of
νn in OLn/pOLn .

Let Pn(X) ∈ K0,n[X] be the minimal polynomial of νn, which is an Eisen-
stein polynomial. When n is sufficiently large, Pn is of degree d = |J |. Write
Pn(X) =

∏
g∈J

(X − g(νn)). We need the following lemma:

Lemma 4.18. For any g ∈ J , g 6= 1, we have v(g(νn)−νn)→ 0 as n→ +∞.

Proof (Proof of the Lemma). This follows immediately from (0.27) and the
proof of Proposition 0.88. ut

We will see that the lemma implies the first assertion. Choose n such that
v(g(νn) − νn) < 1/d for all g 6= 1. Let Pn(X) ∈ OK0,n [X]/pOK0,n [X] be the
polynomial Pn(X) (mod p), We choose Q(X) ∈ OE0 [X], monic of degree d,
a lifting of Pn. Choose β the image in OK/pOK by θ0 of a root of Q in OE0

in such a way that

v(β − ν̄n) ≥ v(β − g(ν̄n)), for all g ∈ J.

We also have v(Pn(β)) ≥ 1 since Q is a lifting of Pn, thus

v(β − ν̄n) ≥
1
d
.

Choose b ∈ OK a lifting of β such that v(b) ≥ 0 and b is of degree d over K0,n

as well, then v(b− νn) ≥ 1
d and hence

v(b− νn) > v(νn − g(νn)), for all g ∈ J.

By Krasner’s Lemma, νn ∈ K0,n(b), moreover, ν̄n = β ∈ θ0(OE0
). This proves

the first assertion.

For any a ∈ Es0 , let P (x) =
d∑
i=0

λiX
i ∈ E0[X] be a separable poly-

nomial such that P (a) = 0. Then for any g ∈ GK0 , g(a) is a root of

g(P ) =
d∑
i=0

g(λi)Xi. To prove g(a) ∈ Es0 , it is enough to show g(E0) = E0,

which follows from the fact

g(π) = (1 + π)χ(g) − 1.

Moreover, for any g ∈ Gal(K/Kcyc
0 ), then g(a) is a root of P . Thus for g ∈

Gal(K/Kcyc
0 ) := H, g|Es

0
∈ Gal(Es0/E0), in other words, we get a map

Gal(K/Kcyc
0 ) −→ Gal(Es0/E0).
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We want to prove this is an isomorphism.

Injectivity: g is in the kernel means that g(a) = a, for all a ∈ Es0 , then g(a) = a
for all a ∈ FrR because Es0 is dense in FrR and the action of g is continuous.

Let a ∈ FrR, then a = (a(n))n∈N with a(n) ∈ C, and (a(n+1))p = a(n).
g(a) = a implies that g(a(0)) = a(0), but the map θ0 : FrR→ C is surjective,
so g acts trivially on C, hence also on K, we get g = 1.

Surjectivity: We identifyH = Gal(K/Kcyc
0 ) ↪→ Gal(Es0/E0) a closed subgroup

by injectivity. If the above map is not onto, we have

E0 ( F = (Es0)H ⊂ (FrR)H = Êrad
0 ,

that is, F is a separable proper extension of E0 contained in Êrad
0 . To finish

the proof, we just need to prove the following lemma. ut

Lemma 4.19. Let E be a complete field of characteristic p > 0. There is no
nontrivial separable extension F of E contained in Êrad.

Proof. Otherwise, we could find a finite separable nontrivial extension E′ of
E contained in Êrad. There are d = [E′ : E] distinct embeddings σ1, · · · , σd :
E′ → Es. We can extend each σi to E′ rad in the natural way, that is, by
setting σi(a) = σi(ap

n

)p
−n

. This map is continuous, hence can be extended
to Ê′ rad = Êrad. But σi is the identity map on Erad, so it is the identity map
on Êrad. This is a contradiction. ut

4.3 An overview of Galois extensions.

4.3.1 A summary of Galois extensions of K0 and E0.

We now give a summary of the Galois extensions ofK0 and E0 we have studied
so far or shall study later.

(1) The field K is a p-adic field with perfect residue field k. The field K0

is the fraction field of the Witt ring W (k). The extension K ⊃ K0 is totally
ramified. Let Kcyc = Kcyc

0 K =
⋃
n≥1

K(ε(n)), we have the following diagram

HK = Gal(K/Kcyc) ⊂ GK = Gal(K/K)
∩ ∩
HK0 = Gal(K/Kcyc

0 ) ⊂ GK0 = Gal(K/K0).

Moreover, HK = HK0 ∩ GK , if we set ΓK = GK/HK = Gal(Kcyc/K), then
ΓK ⊂ ΓK0 = GK0/HK0 , which is isomorphic to Z∗p via the cyclotomic charac-
ter χ. Since Z∗p is of rank 1 over Zp, with torsion subgroup
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(Z∗p)tor '

{
F∗p (' Z/(p− 1)Z) if p 6= 2,
Z/2Z if p = 2,

the group ΓK is also rank 1 over Zp, and we have

1 −→ ∆K −→ ΓK −→ ΓK −→ 1,

where ΓK ' Zp, and ∆K is the torsion subgroup of ΓK , isomorphic to a
subgroup of (Z∗p)tor. Let K∞ = (Kcyc)∆K . Then K∞ is the cyclotomic Zp-
extension of K and moreover K∞ = K0,∞K.

Let HK = Gal(K/K∞), then we have exact sequences

1 −→ HK −→ GK −→ ΓK −→ 1,

1 −→ HK −→ HK −→ ∆K −→ 1.

Replace K by any finite extension L of K0, we obtain field extensions
Lcyc = Kcyc

0 L, L∞ = K0,∞L and Galois groups ΓL, HL, ∆L, ΓL and HL.
In conclusion, we have Fig. 4.1.

K

HL

HL

GL

Lcyc

∆L

ΓLKcyc
0

∆K0

nnnnnnnnnnnnn

HK0

L∞

ΓL

K0,∞

ΓK0

ooooooooooooo
L

K0

nnnnnnnnnnnnnnn

Fig. 4.1. Galois extensions of K and K0

(2) The field E0 = k((π)). Moreover, E0 ⊂ Es0 ⊂ FrR, and HK ⊂ HK0 =
Gal(Es0/E0). For p 6= 2, the group ∆K0

∼= F∗p acts on E0, and if we set

π0 =
∑
a∈Fp

ε[a],

where [a] ∈ Zp is the Teichmüller representative of a, then E0 = k((π0)) =
E
∆K0
0 . Note that π0 is independent of the choice of ε. (For p = 2 one let

π0 = π + π−1 and similar result holds).



4.3 An overview of Galois extensions. 127

Set EK = E = (Es0)HK , then Es0/E is a Galois extension with Galois
group Gal(Es0/E) = HK , and E/E0 is a finite separable extension. Set

E = EK = (Es0)HK = (E)∆K , (4.6)

then E/E is a Galois extension with Galois group Gal(E/E) = ∆K . We see
that Es0 is also a separable closure of E. Set Es = Es0 .

If we replace K by any finite extension of K0, we get the corresponding
EL and EL.

In conclusion, we have Fig. 4.2 .

Fr R = Ês

HL

HL
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Es

HL

HL

Êrad
L

∆L

wwwwwwwww

EL

∆L

vv
vv

vv
vv

vv
Êrad

L

vvvvvvvvv

E0 = EK0

∆K0

HK0

EL

uuuuuuuuu

E0 = EK0

Fig. 4.2. Galois extensions of E and E0

Remark 4.20. E (resp. E) is stable under GK , which acts through ΓK (resp.
ΓK).

4.3.2 The field B̃ and its subrings.

Denote by W (FrR) the ring of Witt vectors with coefficients in FrR, which
is a complete discrete ring with the maximal ideal generated by p and residue
field W (FrR)/p = FrR. Let

B̃ = FracW (FrR) = W (FrR)[
1
p
]. (4.7)

The Galois group GK0 (and therefore GK) acts naturally on W (FrR) and B̃.
Denote by ϕ the Frobenius map on W (FrR) and on B̃. Then ϕ commutes
with the action of GK0 : ϕ(ga) = gϕ(a) for any g ∈ GK0 and a ∈ B̃.
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We know that E0 = k((π)) ⊂ FrR and k[[π]] ⊂ R. Let [ε] = (ε, 0, 0, · · · ) ∈
W (R) be the Teichmüller representative of ε. Set πε = [ε]− 1 ∈ W (R), then
πε = (π, ∗, ∗, · · · ). Set W = W (k) ⊂W (R).

Since
W (R) = lim−→Wn(R) = lim−→W (R)/pn

where Wn(R) = {(a0, · · · , an−1) | ai ∈ R} is a topological ring, the series
∞∑
n=0

λnπ
n
ε , λn ∈W, n ∈ N,

converges in W (R), we get a continuous embedding

W [[πε]] ↪→W (R),

and we identify W [[πε]] with a closed subring of W (R).
The element πε is invertible in W (FrR), hence

W ((πε)) = W [[πε]][
1
πε

] ⊂W (FrR)

whose elements are of the form
+∞∑

n=−∞
λnπ

n
ε : λn ∈W, λn = 0 for n� 0.

Since W (FrR) is complete, this inclusion extends by continuity to

OE0 :=

{
+∞∑

n=−∞
λnπ

n
ε | λn ∈W, λn → 0 when n→ −∞

}
, (4.8)

the p-adic completion of W ((πε)).
Note thatOE0 is a complete discrete ring, whose maximal ideal is generated

by p and whose residue field is E0, thus is the Cohen ring of E0. Let E0 =
OE0 [ 1p ] = ̂K0((πε)) be its fraction field, then E0 ⊂ B̃.

Note that OE0 and E0 are both stable under ϕ and GK0 . Moreover

ϕ([ε]) = (εp, 0, · · · ) = [ε]p, and ϕ(πε) = (1 + πε)p − 1. (4.9)

The group GK0 acts through ΓK0 : for g ∈ GK0 ,

g([ε]) = (εχ(g), 0, · · · ) = [ε]χ(g),

therefore
g(πε) = (1 + πε)χ(g) − 1. (4.10)

Let
π0 = −p+

∑
a∈Fp

[ε][a] (or [ε] + [ε−1]− 2 if p = 2),

then E0 = E∆K0
0 is just the p-adic completion of K0((π0)).
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Proposition 4.21. For any finite extension F of E0 contained in Es = Es0,
there is a unique finite extension EF of E0 contained in B̃ which is unramified
and whose residue field is F .

Proof. By general theory on unramified extensions, we can assume F = E0(a)
is a simple separable extension, and P (X) ∈ E0[X] is the minimal polynomial
of a over E0. Choose Q(X) ∈ OE0 [X] to be a monic polynomial lifting of P .
By Hensel’s lemma, there exists a unique α ∈ B̃ such that Q(α) = 0 and the
image of α in FrR is a, then EF = E0(α) is what we required. ut

By the above proposition,

Eur
0 =

⋃
F

EF ⊂ B̃, (4.11)

where F runs through all finite separable extension of E0 contained in Es.
Let Êur

0 be the p-adic completion of Eur
0 in B̃, then Êur

0 is a discrete valuation
field whose residue field is Es and whose maximal ideal is generated by p.

We have

Gal(Eur
0 /E0) = Gal(Es0/E0) = HK0 , Gal(Eur

0 /E0) = Gal(Es0/E0) = HK0 .

Set
(Eur

0 )HK = EK := E , (Eur
0 )HK = EK := E, (4.12)

then E (resp. E) is again a complete discrete valuation field whose residue field
is E (resp. E) and whose maximal ideal is generated by p, and Eur

0 /E (resp.
Eur
0 /E) is a Galois extension with the Galois group Gal(Eur

0 /E) = HK (resp.
HK). Set

Eur = Eur
0 , Êur = Êur

0 .

It is easy to check that E (resp. E) is stable under ϕ, and also stable under
GK , which acts through ΓK (resp. ΓK).

Replace E and E by EL and EL for L a finite extension of K0, one gets the
corresponding EL and EL, whose residue fields are EL and EL respectively.

We have Fig.4.3 .

4.4 (ϕ, Γ )-modules and p-adic Galois representations

4.4.1 (ϕ, Γ )-modules.

Let V be a Zp representation of HK , where HK = Gal(Es/E) = Gal(Eur/E),
then

M(V ) = (OÊur ⊗Zp
V )HK (4.13)

is an étale ϕ-module over OE . By Theorem 2.32, M defines an equivalence
of categories from RepZp

(HK), the category of Zp representations of HK
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Eur = Eur
0
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E0 = EK0

Fig. 4.3. Galois extensions of E and E0.

to M ét
ϕ (OE), the category of étale ϕ-modules over OE , with a quasi-inverse

functor given by
V : D 7−→ (OÊur ⊗OE D)ϕ=1. (4.14)

If instead, suppose V is a p-adic Galois representation of HK . Then by
Theorem 2.33,

D : V 7−→ (Êur⊗QpV )HK (4.15)

defines an equivalence of categories from RepQp
(HK), the category of p-adic

representations of HK to M ét
ϕ (E), the category of étale ϕ-modules over E ,

with a quasi-inverse functor given by

V : D 7−→ (Êur⊗ED)ϕ=1. (4.16)

Now assume V is a Zp or p-adic Galois representation of GK , set

D(V ) := (OÊur ⊗Zp V )HK or D(V ) := (Êur⊗QpV )HK . (4.17)

Definition 4.22. A (ϕ, Γ )-module D over OE (resp. E) is a ϕ-module over
OE (resp. E) together with an action of ΓK which is semi-linear, and commutes
with ϕ. D is called étale if it is an étale ϕ-module and the action of ΓK is
continuous.

If V is a Zp or p-adic representation ofGK , D(V ) is an étale (ϕ, Γ )-module.
Moreover, by Theorems 2.32 and 2.33, we have

Theorem 4.23. D induces an equivalence of categories between RepZp
(GK)

(resp. RepQp
(GK)), the category of Zp (resp. p-adic) representations of GK

and M ét
ϕ,Γ (OE) (resp. M ét

ϕ,Γ (E)), the category of étale (ϕ, Γ )-modules over OE
(resp. E), with a quasi-inverse functor

V(D) =
(
OÊur ⊗OE D

)
ϕ=1

(resp.
(
Êur ⊗E D

)
ϕ=1

) (4.18)
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and GK acting on OÊur ⊗OE D and Êur ⊗E D by

g(λ⊗ d) = g(λ)⊗ ḡ(d)

where ḡ is the image of g ∈ GK in ΓK . Actually, this is an equivalence of
Tannakian categories.

Remark 4.24. There is a variant of the above theorem. For V any p-adic rep-
resentation of GK , then

D′(V ) = (Êur
0 ⊗Qp

V )HK (4.19)

is an étale (ϕ,Γ)-module over E = (Eur)HK , and

D′(V ) = (D(V ))∆K , ∆K = Gal(E/E).

By Hilbert’s Theorem 90, the map

E ⊗E D′(V ) ∼−→ D(V )

is an isomorphism. Thus the category M ét
ϕ,Γ(E) is an equivalence of categories

with RepQp
(GK) and M ét

ϕ,Γ (E). For Zp-representations, the corresponding
result is also true.

Example 4.25. If K = K0 = W (k)[ 1p ], W = W (k), then E = E0 = K̂((πε)). If

V = Zp, then D(V ) = OE0 = Ŵ ((πε)) with the (ϕ, Γ )-action given by

ϕ(πε) = (1 + πε)p − 1, g(πε) = (1 + πε)χ(g) − 1. (4.20)

We give some remarks about a (ϕ, Γ )-module D of dimension d over E .
Let (e1, · · · , ed) be a basis of D, then

ϕ(ej) =
d∑
i=1

aijei.

To give ϕ is equivalent to giving a matrix A = (aij) ∈ GLd(E). As ΓK is
pro-cyclic (if p 6= 2 or µ4 ⊂ K, moreover ΓK ∼= Zp is always pro-cyclic), let
γ0 be a topological generator of ΓK ,

γ0(ej) =
d∑
i=1

bijei.

To give the action of γ0 is equivalent to giving a matrix B = (bij) ∈ GLd(E).
Moreover, we may choose the basis such that A,B ∈ GLd(OE).
Exercise 4.26. (1) Find the necessary and sufficient conditions on D such
that the action of γ0 can be extended to an action of ΓK .

(2) Find formulas relying A and B equivalent to the requirement that ϕ
and Γ commute.

(3) Given (A1, B1), (A2, B2) two pairs of matrices in GLd(E) satisfying the
required conditions. Find a necessary and sufficient condition such that the
associated representations are isomorphic.
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4.4.2 The operator ψ.

Lemma 4.27. (1) {1, ε, · · · , εp−1} is a basis of E0 over ϕ(E0);
(2) {1, ε, · · · , εp−1} is a basis of EK over ϕ(EK);
(3) {1, ε, · · · , εp−1} is a basis of Es over ϕ(Es);
(4) {1, [ε], · · · , [ε]p−1} is a basis of OÊur over ϕ(OÊur).

Proof. (1) Since E0 = k((π)) with π = ε− 1, we have ϕ(E0) = k((πp));
(2) Use the following diagram of fields, note that EK/E0 is separable but

E0/ϕ(E0) is purely inseparable:

E0 EK

ϕ(E0) ϕ(EK)

We note the statement is still true if replacing K by any finite extension L
over K0.

(3) Because Es =
⋃
LEL.

(4) To show that

(x0, x1, · · · , xp−1) ∈ OpÊur

∼7−→
p−1∑
i=0

[ε]iϕ(xi) ∈ OÊur

is a bijection, by the completeness of OÊur , it suffices to check it mod p, which
is nothing but (3). ut

Definition 4.28. The operator ψ : OÊur → OÊur is defined by

ψ(
p−1∑
i=0

[ε]iϕ(xi)) = x0.

Proposition 4.29. (1) ψϕ = Id;
(2) ψ commutes with GK0 .

Proof. (1) The first statement is obvious.
(2) Note that

g(
p−1∑
i=0

[ε]iϕ(xi)) =
p−1∑
i=0

[ε]iχ(g)ϕ(g(xi)).

If for 1 ≤ i ≤ p− 1, write iχ(g) = ig + pjg with 1 ≤ ig ≤ p− 1, then

ψ(
p−1∑
i=0

[ε]iχ(g)ϕ(g(xi))) = ψ(ϕ(g(x0)) +
p−1∑
i=1

[ε]igϕ([ε]jgg(xi))) = g(x0).

ut
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Corollary 4.30. (1) If V is a Zp-representation of GK , there exists a unique
operator ψ : D(V )→ D(V ) with

ψ(ϕ(a)x) = aψ(x), ψ(aϕ(x)) = ψ(a)x (4.21)

if a ∈ OEK
, x ∈ D(V ) and moreover ψ commute with ΓK .

(2) If D is an étale (ϕ, Γ )-module over OEK
or EK , there exists a unique

operator ψ : D → D satisfying (1). Moreover, for any x ∈ D,

x =
pn−1∑
i=0

[ε]iϕn(xi) (4.22)

where xi = ψn([ε]−ix).

Proof. (1) The uniqueness follows from OE ⊗ϕ(OE) ϕ(D) = D. For the ex-
istence, consider ψ on OE ⊗ V ⊃ D(V ). D(V ) is stable under ψ because ψ
commutes with HK , ψ commutes with ΓK because ψ commutes with GK0 .

(2) Since D = D(V(D)), we have the existence and uniqueness of ψ. (4.22)
follows by induction on n. ut

Remark 4.31. From the proof, we can define an operator ψ satisfying (4.21)
but not the commutativity of the action of ΓK for any étale ϕ-module D.

Example 4.32. For OE0 ⊃ O+
E0 = K0[[πε]], [ε] = 1 + πε, let x = F (πε) ∈ O+

E0 ,
then ϕ(x) = F ((1 + πε)p − 1). Write

F (πε) =
p−1∑
i=0

(1 + π)iFi((1 + πε)p − 1),

then ψ(F (πε)) = F0(πε). It is easy to see if F (πε) belongs to W [[πε]], Fi(πε)
belongs to W [[πε]] for all i. Hence ψ(O+

E0) ⊂ O
+
E0 = W (k)[[π]]. Consequently,

ψ is continuous on E0 for the natural topology (the weak topology).
Moreover, we have:

ϕ(ψ(F )) =F0((1 + πε)p − 1) =
1
p

∑
zp=1

p−1∑
i=0

(z(1 + πε))iFi((z(1 + πε))p − 1)

=
1
p

∑
zp=1

F (z(1 + πε)− 1).

Proposition 4.33. If D is an étale ϕ-module over OE0 , then ψ is continuous
for the weak topology. Thus ψ is continuous for any an étale ϕ-module D over
OE in the weak topology.

Proof. For the first part, choose e1, e2, · · · , ed in D, such that

D =
⊕

(OE0/pni)ei, ni ∈ N ∪ {∞}.
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Since D is étale, we have D =
⊕

(OE0/pni)ϕ(ei). Then we have the following
diagram:

D
ψ //

o
��

D

o
��⊕

(OE0/pni)ϕ(ei) // ⊕(OE0/pni)ei

∑
xiϕ(ei)

� // ∑ψ(xi)ei

Now since x 7→ ψ(x) is continuous in OE0 , the map ψ is continuous in D.
The second part follows from the fact that OE is a free module of OE0 of

finite rank, and an étale ϕ-module over OE is also étale over OE0 . ut
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de Rham representations

5.1 Hodge-Tate representations

Recall the Tate module Zp(1) = Tp(Gm) of multiplicative groups, choose a
generator t, then GK acts on Zp(1) through the cyclotomic character χ:

g(t) = χ(g)t, χ : GK → Z∗p.

For i ∈ Z, the Tate twist Zp(i) = Zpti is the free Zp-module with GK-action
through χi.

Let M be a Zp-module and i ∈ Z, Recall the i-th Tate twist of M is
M(i) = M ⊗Zp

Zp(i). Then

M →M(i), x 7→ x⊗ ti

is an isomorphism of Zp-modules. Moreover, if GK acts on M , it acts on M(i)
through

g(x⊗ u) = gx⊗ gu = χi(g)gx⊗ u.

One sees immediately the above isomorphism in general does not commute
with the action of GK .

Recall C = K̂.

Definition 5.1. The Hodge-Tate ring BHT is defined to be

BHT =
⊕
i∈Z

C(i) = C[t,
1
t
]

where the element c ⊗ ti ∈ C(i) = C ⊗ Zp(i) is denoted as cti, equipped with
a multiplicative structure by

cti · c′tj = cc′ti+j .
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We have

BHT ⊂ B̂HT = C((t)) =
{ +∞∑
i=−∞

cit
i, ci = 0, if i� 0.

}
Proposition 5.2. The ring BHT is (Qp, GK)-regular, which means that

(1) BHT is a domain;
(2) (FracBHT)GK = (BGK

HT ) = K;
(3) For every b ∈ BHT, b 6= 0 such that g(b) ∈ Qpb, for all g ∈ GK , then b

is invertible. and BGK
HT = K.

Proof. (1) is trivial.
(2) Note that BHT ⊂ FracBHT ⊂ B̂HT, it suffices to show that (B̂HT)GK =

K.
Let b =

∑
i∈Z

cit
i, ci ∈ C, then for g ∈ GK ,

g(b) =
∑

g(ci)χi(g)ti.

For all g ∈ GK , g(b) = b, it is necessary and sufficient that each citi is fixed by
GK , i.e., citi ∈ C(i)GK . By Corollary 3.57, we have CGK = K and C(i)GK = 0
if i 6= 0. This completes the proof of (2).

(3) Assume 0 6= b =
∑
cit

i ∈ BHT such that

g(b) = η(g)b, η(g) ∈ Qp, for all g ∈ GK .

Then g(ci)χi(g) = η(g)ci for all i ∈ Z and g ∈ GK . Hence

g(ci) = (ηχ−i)(g)ci.

For all i such that ci 6= 0, then Qpci is a one-dimensional sub Qp-vector space
of C stable under GK . Thus the one-dimensional representation associated
to the character ηχ−i is C-admissible. This means that, by Sen’s theorem
(Proposition 3.56), for all i such that ci 6= 0 the action of IK through ηχ−i is
finite, which can be true for at most one i. Thus there exists i0 ∈ Z such that
b = ci0t

i0 with ci0 6= 0, hence b is invertible in BHT. ut

Definition 5.3. We say that a p-adic representation V of GK is Hodge-Tate
if it is BHT-admissible.

Let V be any p-adic representation, define

DHT(V ) = (BHT ⊗Qp V )GK .

By Theorem 2.13 and Proposition 5.2,
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Proposition 5.4. For any p-adic representation V , the canonical map

αHT(V ) : BHT ⊗K DHT(V ) −→ BHT ⊗Qp V

is injective and dimK DHT(V ) 6 dimQp
V . V is Hodge-Tate if and only if the

equality
dimK DHT(V ) = dimQp V

holds.

Proposition 5.5. For V to be Hodge-Tate, it is necessary and sufficient that
Sen’s operator Θ of W = V ⊗Qp

C be semi-simple and that its eigenvalues
belong to Z.

Proof. If V is Hodge-Tate, then

Wi = (C(i)⊗Qp
V )GK (−i)⊗K C

is a subspace of W and W = ⊕Wi. One sees that ΘWi
is just multiplication

by i (cf Example 3.26). Therefore the condition is necessary.
To show this is also sufficient, we decompose W into the eigenspaces Wi

of Θ, where Θ is multiplication by i ∈ Z on Wi. Then Θ = 0 on Wi(−i) and
by Theorem 3.29, we have

Wi(−i) = (Wi(−i))GK ⊗K C.

Therefore

dimK DHT(V ) ≥
∑
i

dimK(Wi(−i))GK =
∑
i

dimCWi = dimQp
V

and V is Hodge-Tate. ut
For a p-adic representation V , one sees that DHT is actually a graded

K-vector space since

DHT(V ) =
⊕
i∈Z

griDHT(V ), where griDHT(V ) = (C(i)⊗ V )GK .

Definition 5.6. The Hodge-Tate number of V is defined to be

hi = dim(C(−i)⊗ V )GK .

Example 5.7. Let E be an elliptic curve over K, then Vp(E) = Qp ⊗Zp
Tp(E)

is a 2-dimensional Hodge-Tate representation, and

dim(C ⊗Qp
Vp(E))GK = dim(C(−1)⊗Qp

Vp(E))GK = 1.

Then the Hodge-Tate number is (10, 11).

Let V be a p-adic representation ofGK , define griD∗HT(V ) = (LQp
(V,C(i)))GK ,

then
griD∗HT ' (gr−iDHT(V ∗))∗

as K-vector spaces.
Remark 5.8. A p-adic representation V of GK is B̂HT-admissible if and only if
it is BHT-admissible. This is an easy exercise.
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5.2 de Rham representations

Recall B̃ = W (FrR)
[

1
p

]
⊃ Êur ⊃ E and W (R) ⊂ B̃. In this section, we shall

define the rings B+
dR and BdR such that W (R) ⊂ B+

dR ⊂ BdR.

5.2.1 The homomorphism θ.

Let a = (a0, a1, · · · , am, · · · ) ∈ W (R), where am ∈ R. Recall that one can
write am in two ways: either

am = (a(r)
m )r∈N, a

(r)
m ∈ OC , (a(r+1)

m )p = a(r)
m ;

or
am = (am,r), am,r ∈ OK/p, a

p
m,r+1 = am,r.

Then a 7→ (a0,n, a1,n, · · · , an−1,n) gives a natural map W (R) → Wn(OK/p).
For every n ∈ N, the following diagram is commutative:

Wn+1(OK/p)

fn

��
W (R)

88qqqqqqqqqq
// Wn(OK/p)

where fn((x0, x1, · · · , xn)) = (xp0, · · · , x
p
n−1). It is easy to check the natural

map
W (R) = lim←−

fn

Wn(OK/p) (5.1)

is an isomorphism. Moreover, It is also a homeomorphism if the right hand
side is equipped with the inverse limit topology of the discrete topology.

Note that OK/p = OC/p. We have a surjective map

Wn+1(OC)→Wn(OK/p), (a0, · · · , an) 7→ (ā0, · · · , ān−1).

Let I be its kernel, then

I = {(pb0, pb1, · · · , pbn−1, an) | bi, an ∈ OC}.

Let wn+1 : Wn+1(OC) → OC be the map which sends (a0, a1, · · · , an) to
ap

n

0 + pap
n−1

1 + · · · + pnan. Composite wn+1 with the quotient map OC →
OC/pn, then we get a natural map Wn+1(OC)→ OC/pn. Since

wn+1(pb0, · · · , pbn−1, an) = (pb0)p
n

+ · · ·+ pn−1(pbn−1)p + pnan ∈ pnOC ,

there is a unique homomorphism

θn : Wn(OK/p)→ OC/p
n, (ā0, ā1, · · · , ān−1) 7→

n−1∑
i=0

piap
n−i

i (5.2)
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such that the following diagram

Wn+1(OC)
wn+1 //

��

OC

��
Wn(OK/p)

θn // OC/pn = OK/pn

is commutative. Furthermore, we have a commutative diagram:

Wn+1(OK/p)
θn+1 //

fn

��

OC/pn+1

��
Wn(OK/p)

θn // OC/pn

Thus it induces a homomorphisms of rings

θ : W (R) −→ OC . (5.3)

Lemma 5.9. If x = (x0, x1, · · · , xn, · · · ) ∈ W (R) for xn ∈ R and xn =
(x(m)
n )m∈N, x(m)

n ∈ OC , then

θ(x) =
+∞∑
n=0

pnx(n)
n . (5.4)

Thus θ is a homomorphism of W -algebras.

Proof. For x = (x0, x1, · · · ), the image of x inWn(OK/p) is (x0,n, x1,n, · · · , xn−1,n).
We can pick x(n)

i ∈ OC as a lifting of xi,n, then

θn(x0,n, · · · , xn−1,n) =
n−1∑
i=0

pi(x(n)
i )pn−i =

n−1∑
i=0

pix
(i)
i

since (x(n)
i )p

r

= x
(n−r)
i . Passing to the limit we have the lemma. ut

Remark 5.10. If for x ∈ W (R), write x as x =
∑
n p

n[xn] where xn ∈ R and
[xn] is its Teichmüller representative, then we have

θ(x) =
+∞∑
n=0

pnx(0)
n . (5.5)

Proposition 5.11. The homomorphism θ is surjective.

Proof. For any a ∈ OC , there exists x ∈ R such that x(0) = a. Let [x] =
(x, 0, 0, · · · ), then θ([x]) = x(0) = a. ut
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Choose $ ∈ R such that $(0) = −p. Let ξ = [$] + p ∈ W (R). Then
ξ = ($, 1, 0, · · · ) and by Lemma 5.9, θ(ξ) = $(0) + p = 0.

Proposition 5.12. The kernel of θ, Ker θ is the principal ideal generated by
ξ. Moreover,

⋂
(Ker θ)n = 0.

Proof. For the first assertion, it is enough to check that Ker θ ⊂ (ξ, p), because
OC has no p-torsion and W (R) is p-adically separated and complete. In other
words, if x ∈ Ker θ and x = ξy0 + px1, then θ(x) = pθ(x1), hence x1 ∈ Ker θ.
We may construct inductively a sequence xn−1 = ξyn−1 + pxn, then x =
ξ(
∑
pnyn).

Now assume x = (x0, x1, · · · , xn, · · · ) ∈ Ker θ, then

0 = θ(x) = x
(0)
0 + p

∞∑
n=1

pn−1x(n)
n ,

Thus v(x(0)
0 ) > 1 = vp(p), so v(x0) > 1 = v($). Hence there exists b0 ∈ R

such that x0 = b0$. Let b = [b0], then

x− bξ =(x0, x1, · · · )− (b, 0, · · · )($, 1, 0, · · · )
=(x0 − b0$, · · · ) = (0, y1, y2, · · · )
=p(y′1, y

′
2, · · · ) ∈ pW (R),

where (y′i)
p = yi.

For the second assertion, if x ∈ (Ker θ)n for all n ∈ N, then vR(x̄) ≥
vR(ξ̄n) ≥ n. Hence x̄ = 0 and x = py ∈ pW (R). Then pθ(y) = θ(x) = 0 and
y ∈ Ker θ. Replace x by x/ξn, we see that y/ξn ∈ Ker θ for all n and thus
y ∈

⋂
(Ker θ)n. Repeat this process, then x = py = p(pz) = · · · = 0. ut

5.2.2 The rings B+
dR and BdR.

Note that K0 = FracW = W
[

1
p

]
, let

W (R)
[1
p

]
= K0 ⊗W W (R).

We can use the map x 7→ 1 ⊗ x to identify W (R) to a subring of W (R)
[

1
p

]
.

Note

W (R)
[1
p

]
=
∞⋃
n=0

W (R)p−n = lim−→
n∈N

W (R)p−n.

Then the homomorphism θ : W (R) � OC extends to a homomorphism of
K0-algebras θ : W (R)

[
1
p

]
→ C which is again surjective and continuous. The

kernel is the principal ideal generated by ξ.
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Definition 5.13. (1) The ring B+
dR is defined to be

B+
dR := lim←−

n∈N
W (R)

[1
p

]
/(Ker θ)n = lim←−

n∈N
W (R)

[1
p

]
/(ξ)n. (5.6)

(2) The field BdR is defined to be

BdR := FracB+
dR = B+

dR

[1
ξ

]
. (5.7)

Since Ker θ is a maximal ideal, which is principal and generated by a non-
nilpotent element, B+

dR is a complete valuation ring whose residue field is C,
and BdR is its valuation field.

Remark 5.14. Be careful : there are at least two different topologies on B+
dR

that we may consider:
(1) the topology of the discrete valuation ring;
(2) the topology of the inverse limit with the topology induced by the

topology of W (R)
[

1
p

]
on each quotient.

We call (2) the canonical topology or the natural topology of B+
dR. The

topology (1) is stronger than (2). Actually from(1) the residue field C is
endowed with the discrete topology; from (2), the induced topology on C is
the natural topology of C.

Since
∞⋂
n=1

ξnW (R)
[

1
p

]
= 0, there is an injection

W (R)
[1
p

]
↪→ B+

dR.

We use this to identify W (R) and W (R)
[

1
p

]
with subrings of B+

dR. In partic-
ular, K0 = W

[
1
p

]
is a subfield of B+

dR.
Let L be any finite extension of K0 inside K. Set WL(R) = L ⊗W W (R)

(henceWK0(R) = W (R)
[

1
p

]
). The surjective homomorphism θ : WK0(R) � C

can be extended naturally to θ : WL(R) � C, whose kernel is again the
principal ideal generated by ξ. Moreover, we have a commutative diagram

WK0(R) θ−−−−→ C

incl

y Id

y
WL(R) θ−−−−→ C

Set
B+

dR,L = lim←−
n∈N

WL(R)/(Ker θ)n = lim←−
n∈N

WL(R)/(ξ)n. (5.8)

Then the inclusion WK0(R) ↪→ WL(R) induces the inclusion B+
dR ↪→ B+

dR,L.
However, since both are discrete valuation ring with residue field C, the in-
clusion is actually an isomorphism. This isomorphism is compatible with the
GK0-action. By this way, we identify B+

dR with B+
dR,L and hence K ⊂ B+

dR.
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Remark 5.15. Let K and L be two p-adic local fields. Let K and L be algebraic
closures of K and L respectively. Given a continuous homomorphism h : K →
L, then there is a canonical homomorphism BdR(h) : B+

dR(K)→ B+
dR(L) such

that BdR(h) is an isomorphism if and only if h induces an isomorphism of the
completions of K and L.

From this, we see that BdR depends only on C not on K.

By Theorem 0.21, we have the following important fact:

Proposition 5.16. For the homomorphism θ : B+
dR → C from a complete

discrete valuation ring to the residue field of characteristic 0, there exists a
section s : C → B+

dR which is a homomorphism of rings such that θ(s(c)) = c
for all c ∈ C.

The section s is not unique. Moreover, one can prove that

Exercise 5.17. (1) There is no section s : C → B+
dR which is continuous in

the natural topology.
(2) There is no section s : C → B+

dR which commutes with the action of
GK .

In the following remark, we list some main properties of BdR.

Remark 5.18. (1) Assume K ⊂ B+
dR. Note that k̄ is the residue field of K,

as well as the residue field of R, and k̄ ⊂ R (see Proposition 4.7). Thus
W (k̄) ⊂W (R). Let

P0 = W (k̄)
[1
p

]
= FracW (k̄),

which is the completion of the maximal unramified extension of K0 in C. We
have

P0 ⊂W (R)
[1
p

]
, and P0 ⊂ C

and θ is a homomorphism of P0-algebras. Let P = P0K which is an algebraic
closure of P0, then

P ⊂ B+
dR

and θ is also a homomorphism of P -algebras.
(2) A theorem by Colmez (cf. appendix of [Fon94a]) claims that K is

dense in B+
dR with a quite complicated topology in K induced by the natural

topology of B+
dR. However it is not dense in BdR.

(3) The Frobenius map ϕ : W (R)
[

1
p

]
→ W (R)

[
1
p

]
is not extendable to a

continuous map ϕ : B+
dR → B+

dR. Indeed, θ([$1/p] + p) 6= 0, thus [$1/p] + p is
invertible in B+

dR. But if ϕ is the natural extension of the Frobenius map, one
should have ϕ(1/([$1/p] + p)) = 1/ξ /∈ B+

dR.
(4) For any i ∈ Z, let FiliBdR be the i-th power of the maximal ideal

of B+
dR. Then if i ≥ 0, FiliBdR = mi

B+
dR

. For i ∈ Z, FiliBdR is the free

B+
dR-module generated by ξi, i.e.,

FiliBdR = B+
dRξ

i, Fil0BdR = B+
dR. (5.9)
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5.2.3 The element t.

Recall the element ε ∈ R given by ε(0) = 1 and ε(1) 6= 1, then [ε]− 1 ∈W (R)
and

θ([ε]− 1) = ε(0) − 1 = 0.

Thus [ε]− 1 ∈ Ker θ = Fil1BdR. Then (−1)n+1 ([ε]−1)n

n ∈W (R)[ 1p ]ξ
n and

log[ε] =
∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
∈ B+

dR. (5.10)

We call the above element t = log[ε].

Proposition 5.19. The element

t ∈ Fil1BdR and t /∈ Fil2BdR.

In other words, t generates the maximal ideal of B+
dR.

Proof. That t ∈ Fil1BdR is because

([ε]− 1)n

n
∈ Fil1BdR for all n ≥ 1.

Since
([ε]− 1)n

n
∈ Fil2BdR if n ≥ 2,

to prove that t /∈ Fil2BdR, it is enough to check that

[ε]− 1 /∈ Fil2BdR.

Since [ε]− 1 ∈ Ker θ, write [ε]− 1 = λξ with λ ∈W (R), then

[ε]− 1 /∈ Fil2BdR ⇐⇒ θ(λ) 6= 0⇐⇒ λ /∈W (R)ξ.

It is enough to check that [ε] − 1 /∈ W (R)ξ2. Assume the contrary and let
[ε]− 1 = λξ2 with λ ∈W (R). Write λ = (λ0, λ1, λ2, · · · ). Since

ξ = ($, 1, 0, 0, · · · ), ξ2 = ($2, · · · ),

we have λξ2 = (λ0$
2, · · · ). But

[ε]− 1 = (ε, 0, 0, · · · )− (1, 0, 0, · · · ) = (ε− 1, · · · ),

hence ε− 1 = λ0$
2 and

v(ε− 1) > 2.

We have computed that v(ε− 1) = p
p−1 (see Lemma 4.13), which is less than

2 if p 6= 2, we get a contradiction. If p = 2, just compute the next term, we
will get a contradiction too. ut



144 5 de Rham representations

Remark 5.20. We should point out that our t is the p-adic analogy of 2πi ∈ C.
Although exp(t) = [ε] 6= 1 in B+

dR, θ([ε]) = 1 in C = Cp.

Recall Zp(1) = Tp(Gm), viewed additively. Let Zp(1)∗ = Zp(1), viewed
multiplicatively. Then Zp(1)∗ = {ελ : λ ∈ Zp} is a subgroup of U+

R (cf.
Proposition 4.15), and Zp(1) = Zpt ⊂ B+

dR. We have

log([ε]λ) = λ log([ε]) = λt.

For any g ∈ GK , g(t) = χ(g)t where χ is the cyclotomic character. Recall

FiliBdR = B+
dRt

i = B+
dR(i)

and
BdR = B+

dR[
1
t
] = B+

dR[
1
ξ
],

Then

grBdR =
⊕
i∈Z

griBdR =
⊕
i∈Z

FiliBdR/Fili+1BdR

=
⊕
i∈Z

B+
dR(i)/tB+

dR(i) =
⊕
i∈Z

C(i).

Hence

Proposition 5.21. grBdR = BHT = C(t, 1
t ) ⊂ B̂HT = C((t)).

Remark 5.22. If we choose a section s : C → B+
dR which is a homomorphism

of rings and use it to identify C with a subfield of B+
dR, then BdR ' C((t)).

This is not the right way since s is not continuous. Note there is no such an
isomorphism which is compatible with the action of GK .

Proposition 5.23. BGK

dR = K.

Proof. Since K ⊂ K ⊂ B+
dR ⊂ BdR, we have

K ⊂ KGK ⊂ · · · ⊂ BGK

dR .

Let 0 6= b ∈ BGK

dR , we are asked to show that b ∈ K. For such a b, there exists
an i ∈ Z such that b ∈ FiliBdR but b /∈ Fili+1BdR. Denote by b the image of
b in griBdR = C(i), then b 6= 0 and b ∈ C(i)GK . Recall that

C(i)GK =

{
0, i 6= 0,
K, i = 0,

then i = 0 and b ∈ K ⊂ B+
dR. Now b− b ∈ BGK

dR and b− b ∈ (FiliBdR)GK for
some i ≥ 1, hence b− b = 0. ut
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5.2.4 Galois cohomology of BdR

Suppose K is a finite extension of K0. Recall that we have the following:

Proposition 5.24. For i ∈ Z, then
(1) if i 6= 0, then Hn(GK , C(i)) = 0 for all n;
(2) if i = 0, then Hn(GK , C) = 0 for n ≥ 2, H0(GK , C) = K,

and H1(GK , C) is a 1-dimensional K-vector space generated by logχ ∈
H1(GK ,K0). (i.e, the cup product x 7→ x ∪ logχ gives an isomorphism
H0(GK , C) ' H1(GK , C)).

Proof. For the case n = 0, this is just Corollary 3.57.
We claim that Hn(HK , C(i))ΓK = 0 for n ≥ 0. Indeed, for any finite

Galois extension L/K∞, let α ∈ L such that TrL/K∞(α) = 1 and let c ∈
Hn(L/K∞, C(i)GL). Set

c′(g1, · · · , gn−1) =
∑

h∈Gal(L/K∞)

g1g2 · · · gn−1h(α)c(g1, · · · , gn−1, h),

then dc′ = c. Thus Hn(HK , C(i)) = 0 by passing to the limit.
For n = 1, using the inflation and restriction exact sequence

0 −→ H1(ΓK , C(i)HK ) inf−→ H1(GK , C(i)) res−→ H1(HK , C(i))ΓK .

Then the inflation map is actually an isomorphism. We have C(i)HK = K̂∞(i).
Now K̂∞ = Km ⊕ Xm where Xm is the set of all elements whose normal-
ized trace in Km is 0 by Proposition 0.97. Let m be large enough such that
vK(χ(γm)−1) > d, then χ(γm)iγm−1 is invertible in Xm by Proposition 0.97.
We have

H1(ΓKm
, K̂∞(i)) =

K̂∞
χi(γm)γm − 1

=
Km ⊕Xm

χi(γm)γm − 1
=

Km

χi(γm)γm − 1
.

Thus

H1(ΓKm , K̂∞(i)) =

{
Km, if i = 0;
0, if i 6= 0.

Since K̂∞(i) is a K-vector space, in particular, # Gal(Km/K) is invertible,
we have

Hj(Gal(Km/K), K̂∞(i)Gal(Km/K)) = 0, for j > 0.

By inflation-restriction again, H1(ΓK , K̂∞(i)) = 0 for i 6= 0 and for i = 0,

K = H1(ΓK , K̂∞) = H1(ΓK ,K) = Hom(ΓK ,K) = K · logχ,

the last equality is because ΓK ∼= Zp is pro-cyclic.
For n ≥ 2, Hn(HK , C(i)) = 0. Then just use the exact sequence

1 −→ HK −→ GK −→ ΓK −→ 1

and Hochschild-Serre spectral sequence to conclude. ut
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Proposition 5.25. Suppose i < j ∈ Z ∪ {±∞}, then if i ≥ 1 or j ≤ 0,

H1(GK , tiB+
dR/t

jB+
dR) = 0;

if i ≤ 0 and j > 0, then x 7→ x ∪ logχ gives an isomorphism

H0(GK , tiB+
dR/t

jB+
dR)(' K) ∼−→ H1(GK , tiB+

dR/t
jB+

dR).

Proof. For the case i, j finite, let n = j − i, we prove it by induction. For
n = 1, tiB+

dR/t
i+1B+

dR ' C(i), this follows from Proposition 5.24. For general
n, we just use the long exact sequence in continuous cohomology attached to
the exact sequence

0 −→ C(i+ n) −→ tiB+
dR/t

n+i+1B+
dR −→ tiB+

dR/t
i+nB+

dR −→ 0

to conclude.
By passage to the limit, we obtain the general case. ut

5.2.5 de Rham representations.

Note that BdR is a field containingK, therefore containing Qp, and is equipped
with an action of GK . It is (Qp, GK)-regular since it is a field. That is, for
any p-adic representation V of GK , let DdR(V ) = (BdR ⊗Qp

V )GK , then

αdR(V ) : BdR ⊗K DdR(V )→ BdR ⊗Qp
V

is injective.

Definition 5.26. A p-adic representation V of GK is called de Rham if it is
BdR-admissible, equivalently if αdR(V ) is an isomorphism or if dimK DdR(V ) =
dimQp V .

Let FilK be the category of finite dimensional K-vector spaces D equipped
with a decreasing filtration indexed by Z which is exhausted and separated.
That is,

• FiliD are sub K-vector spaces of D,
• Fili+1D ⊂ FiliD,
• FiliD = 0 for i� 0, and FiliD = D for i� 0.

A morphism
η : D1 → D2

between two objects of FilK is a K-linear map such that

η(FiliD1) ⊂ FiliD2 for all i ∈ Z.

We say η is strict or strictly compatible with the filtration if for all i ∈ Z,

η(FiliD1) = FiliD2 ∩ Im η.

FilK is an additive category.
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Definition 5.27. A short exact sequence in FilK is a sequence

0 −→ D′
α−→ D

β−→ D′′ −→ 0

such that:
(1) α and β are strict morphisms;
(2) α is injective, β is surjective and

α(D′) = {x ∈ D | β(x) = 0}.

If D1 and D2 are two objects in FilK , we can define D1 ⊗D2 as

• D1 ⊗D2 = D1 ⊗K D2 as K-vector spaces;
• Fili(D1 ⊗D2) =

∑
i1+i2=i

Fili1 D1 ⊗K Fili2 D2.

The unit object is D = K with

FiliK =

{
K, i ≤ 0,
0, i > 0.

If D is an object in FilK , we can also define its dual D∗ by

• D∗ = LK(D,K) as a K-vector space;
• FiliD∗ = (Fil−i+1D)⊥ = {f : D → K | f(x) = 0, for all x ∈ Fil−i+1D}.

If V is any p-adic representation of GK , then DdR(V ) is a filtered K-vector
space, with

FiliDdR(V ) = (FiliBdR ⊗Qp
V )GK .

Theorem 5.28. Denote by RepdR
Qp

(GK) the category of p-adic representa-
tions of GK which are de Rham. Then DdR : RepdR

Qp
(GK) → FilK is an

exact, faithful and tensor functor.

Proof. One needs to show that

(i) For an exact sequence 0 → V ′ → V → V ′′ → 0 of de Rham represen-
tations, then

0→ DdR(V ′)→ DdR(V )→ DdR(V ′′)→ 0

is a short exact sequence of filtered K-vector spaces.
(ii) If V1, V2 are de Rham representations, then

DdR(V1)⊗DdR(V2)
∼−→ DdR(V1 ⊗ V2)

is an isomorphism of filtered K-vector spaces.
(iii) If V is de Rham, then V ∗ = LQp

(V,Qp) and

DdR(V ∗) ∼= (DdR(V ))∗
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as filtered K-vector spaces.

For the proof of (i), one always has

0→ DdR(V ′)→ DdR(V )→ DdR(V ′′),

the full exactness follows from the equality

dimK DdR(V ) = dimK DdR(V ′) + dimK DdR(V ′′).

For (ii), the injections Vi → V1⊗V2 induces natural injections DdR(Vi)→
DdR(V1 ⊗ V2), thus we have an injection

DdR(V1)⊗DdR(V2) ↪→ DdR(V1 ⊗ V2).

By considering the dimension, this injection must also be surjective and V1⊗V2

must be de Rham.
(iii) follows from

DdR(V ∗) =(BdR ⊗Qp
HomQp

(V,Qp))GK ∼= HomBdR(BdR ⊗Qp
V,BdR)GK

∼=HomK((BdR ⊗Qp V )GK ,K) = DdR(V )∗.

ut

Let V be a de Rham representation. By the above Theorem, then

(Fili+1BdR ⊗Qp V )GK = Fili+1 DdR(V ).

For the short exact sequence

0→ Fili+1BdR → FiliBdR → C(i)→ 0,

if tensoring with V we get

0→ Fili+1BdR ⊗Qp
V → FiliBdR ⊗Qp

V → C(i)⊗Qp
V → 0.

Take the GK-invariant, we get

0→ Fili+1 DdR(V )→ FiliDdR(V )→ (C(i)⊗Qp
V )GK .

Thus

griDdR(v) = FiliDdR(V )/Fili+1 DdR(V ) ↪→ (C(i)⊗Qp
V )GK .

Hence, ⊕
i∈Z

griDdR(v) ↪→
⊕
i∈Z

(C(i)⊗Qp
V )GK = (BHT ⊗Qp

V )GK .

Then
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Proposition 5.29. A p-adic representation V is de Rham implies that V is
Hodge-Tate and

dimK DdR(V ) =
∑
i∈Z

dimK griDdR(V ).

Proposition 5.30. (1) There exists a p-adic representation V of GK which
is a nontrivial extension of Qp(1) by Qp, i.e. there exists a non-split exact
sequence of p-adic representations

0→ Qp → V → Qp(1)→ 0.

(2) Such a representation V is a Hodge-Tate representation.
(3) Such a representation V is not a de Rham representation.

Proof. (1) It is enough to prove it for K = Qp (the general case is by base
change Qp → K). In this case Ext1(Qp(1),Qp) = H1

cont(Qp,Qp(−1)) 6= 0 (by
Tate’s duality, it is isomorphic to H1

cont(K,Qp) = Qp) and is nontrivial. Thus
there exists a nontrivial extension of Qp(1) by Qp.

(2) By tensoring C(i) for i ∈ Z, we have an exact sequence

0→ C(i)→ V ⊗Qp C(i)→ C(i+ 1)→ 0.

Thus we have a long exact sequence by taking the GK-invariants

0→ C(i)GK → (V ⊗Qp C(i))GK → C(i+ 1)GK → H1(GK , C(i)).

If i 6= 0,−1, C(i)GK = C(i + 1)GK = 0 (cf. Proposition 5.24), thus (V ⊗Qp

C(i))GK = 0. If i = 0, CGK = K, C(1)GK = 0 and hence (V ⊗Qp
C)GK =

K. If i = −1, C(−1)GK = 0, CGK = K and H1(GK , C(−1)) = 0, hence
(V ⊗Qp C(−1))GK = K. Thus V is Hodge-Tate.

(3) is not so easy! We shall prove it at the end of § . ut

Remark 5.31. Any extension of Qp by Qp(1) is de Rham. Indeed, by the exact
sequence 0 → Qp(1) → V → Qp → 0, the functor (B+

dR ⊗Qp
−)GK induces a

long exact sequence

0→ (tB+
dR)GK = 0→ (B+

dR ⊗Qp V )GK → K → H1(GK , tB+
dR).

By Proposition 5.25, H1(GK , tB+
dR) = 0. Hence DdR(V )→ (B+

dR ⊗ V )GK →
K = DdR(Qp) is surjective. Thus dimK DdR(V ) = 2 and V is de Rham.

5.2.6 A digression.

Let E be any field of characteristic 0 and X a projective (or proper) smooth
algebraic variety over E. Consider the complex

Ω•X/E : OX/E → Ω1
X/E → Ω2

X/E → · · · ,
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define the de Rham cohomology groupHm
dR(X/E) to be the hyper cohomology

Hm(Ω•X/E) for each m ∈ N, then it is a finite dimensional E-vector space
equipped with the Hodge filtration.

Given an embedding σ : E ↪→ C, then X(C) is an analytic manifold. The
singular cohomology Hm(X(C),Q) is defined to be the dual of Hm(X(C),Q)
which is a finite dimensional Q-vector space. The Comparison Theorem claims
that there exists a canonical isomorphism (classical Hodge structure)

C⊗Q H
m(X(C),Q) ' C⊗E Hm

dR(X/E).

We now consider the p-adic analogue. Assume E = K is a p-adic field
and ` is a prime number. Then for each m ∈ N, the étale cohomology group
Hm

ét (XK,Q`
) is an `-adic representation of GK which is potentially semi-stable

if ` 6= p. When ` = p, we have

Theorem 5.32 (Tsuji [Tsu99], Faltings [Fal89]). The p-adic represen-
tation Hm

ét (XK ,Qp) is a de Rham representation and there is a canonical
isomorphism of filtered K-vector spaces:

DdR(Hm
ét (XK ,Qp)) ' Hm

dR(X/K),

and the identification

BdR ⊗Qp
Hm

ét (XK ,Qp) = BdR ⊗K Hm
dR(X/K)

gives rise to the notion of p-adic Hodge structure.

Let ` be a prime number. Let GQ = Gal(Q/Q). For p a prime number,
let Gp = Gal(Qp/Qp) and Ip be the inertia group. Choose an embedding
Q ↪→ Qp, then Ip ⊂ Gp ↪→ GQ.

Definition 5.33. An `-adic representation V of GQ is geometric if

(1) It is unramified away from finitely many p’s: let ρ : GQ → AutQl
(V ) be

the representation, it unramified at p means that ρ(Ip) = 1 or Ip ⊂ Ker ρ.
(2) The representation is de Rham at p = `.

Conjecture 5.34 (Fontaine-Mazur [FM95]). Geometric representations are ex-
actly “the representations coming from algebraic geometry”.

5.3 Overconvergent rings and overconvergent
representations

In this section, we let

A = OÊur , B = Êur,

Ã = W (FrR), B̃ = Frac(Ã) = W (FrR)
[
1
p

]
.
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5.3.1 The rings of Overconvergent elements.

Definition 5.35. (1) For x =
+∞∑
i=0

pi[xi] ∈ Ã, xi ∈ FrR, k ∈ N, define

wk(x) := inf
i≤k

v(xi).

(2) For a real number r > 0, define

v(0, r](x) := inf
k∈N

(
wk(x) +

k

r

)
= inf
k∈N

(
v(xk) +

k

r

)
∈ R ∪ {±∞}.

(3) Define

Ã(0, r] := {x ∈ Ã : lim
k→+∞

(
v(xk) +

k

r

)
= lim
k→+∞

(
wk(x) +

k

r

)
= +∞}.

One checks easily that for α ∈ FrR, wk(x) ≥ v(α) if and only if [α]x ∈
W (R) + pk+1Ã.

Proposition 5.36. Ã(0, r] is a ring and v = v(0, r] satisfies the following prop-
erties:

(1) v(x) = +∞⇔ x = 0;
(2) v(xy) ≥ v(x) + v(y);
(3) v(x+ y) ≥ inf(v(x), v(y));
(4) v(px) = v(x) + 1

r ;
(5) v([α]x) = v(α) + v(x) if α ∈ FrR;
(6) v(g(x)) = v(x) if g ∈ GK0 ;
(7) v(0, p−1r](ϕ(x)) = pv(0, r](x).

Proof. This is an easy exercise. ut

Lemma 5.37. Given x =
+∞∑
k=0

pk[xk] ∈ Ã, the following conditions are equiv-

alent:

(1)
+∞∑
k=0

pk[xk] converges in B+
dR;

(2)
+∞∑
k=0

pkx
(0)
k converges in C;

(3) lim
k→+∞

(k + v(xk)) = +∞;

(4) x ∈ Ã(0, 1].

Remark 5.38. We first note that if x ∈ FrR, then [x] ∈ B+
dR. Indeed, let

v(x) = −m. Recall ξ = [$] + p ∈ W (R), where $ ∈ R and $(0) = −p, is a
generator of Ker θ. Then x = $−my for y ∈ R. Thus

[x] = [$]−m[y] = p−m(
ξ

p
− 1)−m[y] ∈ B+

dR.
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Proof. (3) ⇔ (4) is by definition of Ã(0, r]. (2) ⇔ (3) is by definition of v. (1)
⇒ (2) is by continuity of θ : B+

dR → C. So it remains to show (2) ⇒ (1).
We know that

ak = k + [v(xk)]→ +∞ if k → +∞.

Write xk = $ak−kyk, then yk ∈ R. We have

pk[xk] =
(

p

[$]

)k
[$]ak [yk] = pak(

ξ

p
− 1)ak−k[yk].

By expanding (1− x)t into power series, we see that

pak

(
ξ

p
− 1
)ak−k

∈ pak−mW (R) + (Ker θ)m+1

for all m. Thus, ak → +∞ implies that pk[xk] → 0 ∈ B+
dR/(Ker θ)m+1 for

every m, and therefore also in B+
dR by the definition of the topology of B+

dR.
ut

Remark 5.39. We just proved that Ã(0,1] = B+
dR ∩ Ã, and we can use the

isomorphism
ϕ−n : Ã(0,p−n] ∼−→ Ã(0, 1]

to embed Ã(0,r] in B+
dR, for r ≥ p−n.

Define

Ã† :=
⋃
r>0

Ã(0, r] = {x ∈ Ã : ϕ−n(x) converges in B+
dR for n� 0}.

Lemma 5.40. x =
+∞∑
k=0

pk[xk] is a unit in Ã(0,r] if and only if x0 6= 0 and

v(xk

x0
) > −kr for all k ≥ 1. In this case, v(0,r](x) = v(x) = v(x0).

Proof. The only if part is an easy exercise. Now if x =
+∞∑
k=0

pk[xk] is a unit in

Ã(0,r], suppose y =
+∞∑
k=0

pk[yk] is its inverse. Certainly x0 6= 0. As

lim
k→∞

v(xk) +
k

r
= +∞, lim

k→∞
v(yk) +

k

r
= +∞,

there are only finite number of xk and yj such that v(xk) + k
r = v(0,r](x) =

v(x) and v(xj) + k
r = v(0,r](y) = v(y). Suppose m,n are maximal such that

v(xm)+ m
r = v(x) and v(yn)+ n

r = v(y). Compare the coefficients of pm+n in
xy = 1, if m+ n > 1, then
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[xm+n] + · · ·+ [xmyn] + · · · [ym+n] = 0.

Hence

v(xmyn) +
m+ n

r
≥ min
i+j=m+n
i 6=m

{v(xiyj) +
m+ n

r
} > v(xmyn) +

m+ n

r
,

a contradiction. Thus m = n = 0 and for k > 0, v(xk) + k
r > v(x0) or

equivalently, v(xk

x0
) > −kr . ut

Set
B̃(0, r] = Ã(0,r][

1
p
] =

⋃
n∈N

p−nÃ(0,r],

endowed with the topology of inductive limit, and

B̃† =
⋃
r>0

B̃(0, r],

again with the topology of inductive limit. B̃† is called the field of overcon-
vergent elements.

By the above lemma, we have

Theorem 5.41. B̃† is a subfield of B̃, stable by ϕ and GK0 , both acting con-
tinuously.

Proof. We only prove that non-zero elements are invertible in B̃†. The conti-
nuity of ϕ- and GK0-actions is left as an exercise.

Suppose x =
+∞∑
k=k0

pk[xk] ∈ B̃(0,r] with xk0 6= 0, then x = pk0 [xk0 ]y with

y =
+∞∑
k=0

pk[yk] ∈ B̃(0,r] and y0 = 1. It suffices to show that y is invertible in

B̃†. Suppose v(0,r](y) ≥ −C for some constant C ≥ 0. Choose s ∈ (0, r) such
that 1

s −
1
r > C. Then v(yk) + k

s > v(yk) + k
r + kC > 0 if k ≥ 1. By the above

lemma, y is invertible in Ã(0,s]. ut

From now on in this chapter, we suppose L is a finite extension of K0 and
F ′ = F ′L = Lcyc ∩Kur

0 .

Definition 5.42. (1) B† = B̃† ∩ B, A† = Ã† ∩ B (so B† is a subfield of B
stable by ϕ and GK0), A

(0, r] = Ã(0, r] ∩B.
(2) If Λ ∈ {A,B, Ã†, B̃†, A†, B†, A(0, r], B(0, r]}, define ΛL = ΛHL . For

example AK = OE and A(0, r]
K = Ã(0, r] ∩ OE .

(3) If Λ ∈ {A,B,A†, B†, A(0, r], B(0, r]}, and n ∈ N, define ΛL,n =
ϕ−n(ΛL) ⊂ B̃.
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We want to make A(0, r]
L more concrete. We know that

AK0 = OE0 = Ŵ ((πε)) =

{
+∞∑

n=−∞
λnπ

n
ε | λn ∈W, λn → 0 when n→ −∞

}
,

and BK0 = ̂K0((πε)), where πε = [ε]− 1.
Consider the extension EL/E0. There are two cases.

(1) If EL/E0 is unramified, then EL = k′((π)) (recall π = ε − 1) where k′ is
a finite Galois extension over k. Then F ′ = FracW (k′) ⊂ Lcyc and

AL = OE =

{
+∞∑

n=−∞
λnπ

n
ε | λn ∈ OF ′ = W (k′), λn → 0 when n→ −∞

}
.

Let π̃L = πε in this case.
(2) In general, suppose the residue field of EL is k′. Then F ′ = FracW (k′) ⊂
Lcyc. Let πL be a uniformizer of EL = k′((πL)), and let PL(X) ∈ EF ′ [X] =
k′((π))[X] be a minimal polynomial of πL. Let PL(X) ∈ OF ′ [πε][X] be a
lifting of PL. By Hensel’s lemma, there exists a unique π̃L ∈ AL such that
PL(π̃L) = 0 and πL = π̃L mod p.

Lemma 5.43. If we define

rL =

{
1, if in case (1),
(2v(D))−1, otherwise .

where D is the different of EL/EF ′ , then πL and P ′L(π̃L) are units in A
(0, r]
L

for all 0 < r < rL.

Proof. We first show the case (1). We have πε = [ε− 1] + p[x1] + p2[x2] + · · · ,
where xi is a polynomial in εp

−i−1 with coefficients in Z and no constant term.
Then v(xi) ≥ v(εp

−i−1) = 1
(p−1)pi−1 . This implies that πε = [ε−1](1+p[a1]+

p2[a2] + · · · ), with v(a1) = v(x1)− v(ε− 1) ≥ −1 and v(ai) ≥ −v(ε− 1) ≥ −i
for i ≥ 2. By Lemma 5.40, πε is a unit in A(0, r]

L for 0 < r < 1.
In general, we have π̃L = [πL] + p[α1] + p2[α2] + · · · and v(πL) = 1

ev(π) =
p

e(p−1) where e = [EL : EF ′ ] is the ramification index. Then v( αi

πL
) ≥ −v(πL) =

− p
e(p−1) . Thus π̃L is a unit A(0, r]

L for 0 < r < e(p−1)
p . It is easy to check

e(p−1)
p ≥ (2v(DEL/EF ′

)−1.

Similarly, P ′L(π̃L) = [P
′
L(πL)] + p[β1] + p2[β2] + · · · , and

v
( βi

P
′
L(πL)

)
≥ −v(P ′L(πL)) = −v(DEL/EF ′

),

while the last equality follows from Proposition 0.73. Thus P ′L(π̃L) is a unit
A

(0, r]
L for 0 < r < (2v(DEL/EF ′

)−1. ut
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Let s : EL → AL be the section of x 7→ x̄mod p given by the formula

s

(∑
k∈Z

akπ
k
L

)
=
∑
k∈Z

[ak]π̃kL. (5.11)

For x ∈ AL, define {xn}n∈N recursively by x0 = x and xn+1 = 1
p (xn− s(x̄n)).

Then x =
∑+∞
n=0 p

ns(x̄n). By this way,

AL = {
∑
n∈Z

anπ̃
n
L : an ∈ OF ′ , lim

n→−∞
v(an) = +∞} (5.12)

Lemma 5.44. Suppose x ∈ AL. Then
(1) If k ∈ N, wk(

x−s(x̄)
p ) ≥ min(wk+1(x), w0(x)− k+1

rL
).

(3) If define xn as above, then for n ∈ N, v(x̄n) ≥ min0≤i≤n(wi(x)− n−i
rL

).

Proof. We first note that, since π̃L is a unit in A(0,r]
L , if ȳ ∈ EL and 0 < r < rL,

then s(ȳ) ∈ A(0,r] and v(0,r](s(ȳ)) = v(ȳ). Thus

wk

(
x− s(x̄)

p

)
= wk+1(x− s(x̄)) ≥ min

(
wk+1(x), v(x̄)−

k + 1
rL

)
Now (1) follows since w0(x) = v(x̄).

By (1), wk(xn+1) ≥ min(wk+1(xn), w0(x)− k+1
rL

. By induction, one has

wk(xn) ≥ min
(
wk+n(x), min

0≤i≤n−1
wi(x)−

k + n− i
rL

)
.

Take k = 0, then (2) follows. ut

Proposition 5.45. (1) If 0 < r < rL, then

A
(0, r]
L = {f(π̃L) =

∑
k∈Z

akπ̃
k
L : ak ∈ OF ′ , lim

k→−∞
(v(ak) + rkv(πL)) = +∞}.

(5.13)
In this case, one has

v(0,r](f(π̃L)) = inf
k∈Z

(
1
r
v(ak) + kv(πL)

)
. (5.14)

(2) The map f 7→ f(πL) is an isomorphism from bounded analytic functions
with coefficients in F ′ on the annulus 0 < vp(T ) ≤ rv(πL) to the ring B(0, r]

L .

Proof. (2) is a direct consequence of (1). Suppose x =
∑
k∈Z akπ̃

k
L. One can

write akπ̃kL in the form pv(ak)[πkK ]u where u is a unit in the ring of integers of
A(0,r]. Hence v(0,r](akπ̃kL) = kv(πL)+ v(ak)

r . If lim
k→−∞

(v(ak)+rkv(πL)) = +∞,

then x =
∑
k∈Z akπ̃

k
L converges in A(0,r] and v(0,r](x) ≥ inf

k∈Z
( 1
rv(ak)+kv(πL)).
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On the other hand, if x ∈ A(0,r], suppose (xn)n∈N is the sequence
constructed as above, and suppose vn = 1

v(πL) min
0≤i≤n

(wi(x) + i−n
rL

). By

Lemma 5.44, one can write x̄n as x̄n =
∑
k≥vn

αn,kπ
k
L and one has x =∑

k∈Z akπ̃
k
L, where ak =

∑
n∈Ik

pn[αk,n] ∈ OF ′ and Ik = {n ∈ N | vn ≤ k}.

The p-adic valuation of ak is bigger than or equal to the smallest element
in Ik. But by definition, vn ≤ k if and only if there exists i ≤ n such that
wi(x) + i−n

rL
≤ kv(πL), in other words, if and only if there exists i ≤ n such

that

wi(x) +
i

r
+ (n− i)

(
1
r
− 1
rL

)
≤ 1
r
(krv(πL) + n).

One then deduces that

v(ak) + krv(πL) ≥ r min
0≤i≤n

((
wi(x) +

i

r

)
+ (n− i)

(1
r
− 1
rL

))
,

This implies lim
k→−∞

(v(ak) + rkv(πL)) = +∞ and v(0,r](x) ≤ inf
k∈Z

( 1
rv(ak) +

kv(πL)). ut

Corollary 5.46. (1) A(0, r]
L is a principal ideal domain;

(2) If L/M is a finite Galois extension over K0, then A
(0, r]
L is an étale

extension of A(0, r]
M if r < rL, and the Galois group is nothing but HM/HL.

Define π̃n = ϕ−n(πε), π̃L,n = ϕ−n(π̃L). Let Ln = L(ε(n)) for n > 0.

Proposition 5.47. (1) If pnrL ≥ 1, θ(π̃L,n) is a uniformizer of Ln;
(2) π̃L,n ∈ Ln[[t]] ⊂ B+

dR.

Proof. First by definition

π̃n = [ε1/p
n

]− 1 = ε(n)et/p
n

− 1 ∈ K0,n[[t]] ⊂ B+
dR,

where [ε1/p
n

] = ε(n)et/p
n

follows from that the θ value of both sides is ε(n)

and the pn-th power of both side is [ε] = et (recall t = log[ε]). This implies
the proposition in the unramified case.

For the ramified case, we proceed as follows.
By the definition of EL, πL,n = θ(π̃L,n) is a uniformizer of Ln mod a =

{x : vp(x) ≥ 1
p}. Let ωn be the image of πL,n in Ln mod a. So we just have to

prove πL,n ∈ Ln.
Write

PL(x) =
d∑
i=0

ai(πε)xi, ai(πε) ∈ OF ′ [[πε]].

Define

PL,n(x) =
d∑
i=0

aϕ
−n

i (πn)xi,
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then PL,n(πL,n) = θ(ϕ(PL(π̃L))) = 0. Then we have v(PL,n(ωn)) ≥ 1
p and

v(P ′L,n(ωn)) =
1
pn
v(P ′L(πL)) =

1
pn
v(dEL/E0) <

1
2p

if pnrL > 1.

Then one concludes by Hensel’s Lemma that πL,n ∈ Ln.
For (2), one uses Hensel’s Lemma in Ln[[t]] to conclude π̃L,n ∈ Ln[[t]]. ut

Corollary 5.48. If 0 < r < rL and pnr ≥ 1, ϕ−n(A(0, r]
L ) ⊆ Ln[[t]] ⊆ B+

dR.

5.3.2 Overconvergent representations

Suppose V is a free Zp-representation of rank d of GK . Let

D(0, r](V ) := (A(0, r] ⊗Zp
V )HK ⊂ D(V ) = (A⊗Zp

V )HK .

This is a A(0, r]
K -module stable by ΓK . Moreover, we have the Frobenius map

ϕ

ϕ : D(0, r](V ) −→ D(0, p−1r](V ).

Definition 5.49. V is a overconvergent representation over K if there exists
an rV > 0, rV ≤ rK such that

AK
⊗

A
(0, rV ]
K

D(0, rV ](V ) ∼−→ D(V ).

By definition, it is easy to see for all 0 < r < rV ,

D(0, r](V ) = A
(0, r]
K

⊗
A

(0, rV ]
K

D(0, rV ](V ).

If V is overconvergent, choose a basis {e1, · · · , ed} of D(0,pr)(V ) over A(0,pr)
K

for pr ≤ rV , then x ∈ D(0,r)(V ) can be written as
∑
i xiϕ(ei), we define the

valuation v(0,r] by
v(0,r](x) = min

1≤i≤d
v(0,r](xi).

One can see that for a different choice of basis, the valuation differs by a
bounded constant.

One can replace K by any finite extension of K0 to obtain the definition
of overconvergent representations over L.

5.3.3 Tate-Sen’s method for Ã(0,r]

Lemma 5.50. If 0 < r < p−n and i ∈ Z∗p, then [ε]ip
n − 1 is a unit in A

(0,r]
K0

and v(0,r]([ε]ip
n − 1) = pnv(π).
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Proof. We know that πε = [ε] − 1 is a unit in A
(0,r]
K0

for 0 < r < 1, then

[ε]p
n − 1 = ϕn(πε) is a unit in A(0,r]

K0
for 0 < r < p−n. In general,

[ε]ip
n − 1

[ε]pn − 1
= i+

∞∑
k=1

(
i

k + 1

)
([ε]p

n

− 1)k

is a unit in AK0 , hence we have the lemma. ut

Lemma 5.51. Let γ ∈ ΓK0 , suppose χ(γ) = 1 + upn ∈ Z∗p with u ∈ Z∗p. Then
for 0 < r < p−n,

(1) v(0,r](γ(πε)− πε) = pnv(π).
(2) For x ∈ A(0,r]

K0
, v(0,r](γ(x)− x) ≥ v(0,r](x) + (pn − 1)v(π).

Proof. We have γ(πε) − πε = [ε]([ε]up
n − 1). By Lemma 5.50, [ε]up

n − 1 is
a unit in A

(0,r]
K0

, then v(0,r](γ(πε) − πε) = v(0,r]([ε]up
n − 1) = pnv(π). This

finishes the proof of (1).
For (2), write x =

∑
k akπ

k
ε where v(ak)+ rkv(π)→ +∞ as k → +∞. We

know, by the proof of Proposition 5.45, that v(0,r](x) = mink{nkv(π) + k
r }

where nk = min{n | v(an) = k}. Now

γ(πkε )− πkε =πkε

(
γ(πε)k

πkε
− 1
)

=πkε
∞∑
j=1

(
k

j

)(
γ(πε)
πε

− 1
)j

=πk−1
ε (γ(πε)− πε)

∞∑
j=0

(
k

j + 1

)(
γ(πε)
πε

− 1
)j

,

therefore

γ(x)− x = (γ(πε)− πε)
∑
k

akπ
k−1
ε

(
γ(πε)
πε

− 1
)j

and

v(0,r](γ(x)− x) ≥ pnv(π) + min
k
{(nk − 1)v(π) +

k

r
} = v(0,r](x) + (pn− 1)v(π).

This finishes the proof of (2). ut

Lemma 5.52. Suppose V is an over-convergent representation over L. If
{e1, · · · , ed} is a basis of D(0,r](V ) over A(0,r]

L and ei ∈ ϕ(D(V )) for every i,

then x =
∑
xiei ∈ D(0,r](V )ψ=0 if and only if xi ∈

(
A

(0,r]
L

)ψ=0

for every i.

Proof. One sees that ψ(x) = 0 if and only if ϕ(ψ(x)) = 0. As ei ∈ ϕ(D(V )),
ϕ(ψ(ei)) = ei and ϕ(ψ(x)) =

∑
i ϕ(ψ(xi))ei. Therefore ψ(x) = 0 if and only

if ϕ(ψ(xi)) = 0 for every i, or equivalently, ψ(xi) = 0 for every i. ut
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Proposition 5.53. If V is overconvergent over L, then there exists a constant
CV such that if γ ∈ ΓL, n(γ) = vp(log(χ(γ))) and r < min{p−1rV , p

−n(γ)},
then γ − 1 is invertible in D(0, r](V )ψ=0 and

v(0, r]((γ − 1)−1x) ≥ v(0, r](x)− CV − pn(γ)v(π̄).

Remark 5.54. (1) Since through different choices of bases, v(0,r] differs by a
bounded constant, the result of the above proposition is independent of the
choice of bases.

(2) We shall apply the result to (A(0, r]
L )ψ=0.

Proof. First, note that if replace V by IndLK0
V , we may assume that L = K0.

Suppose r < p−1rV , pick a basis {e1, · · · , ed} of D(0,pr](V ) over A(0,pr]
K0

,

then {ϕ(e1), · · · , ϕ(ed)} is a basis of D(0,r](V ) over A(0,r]
K0

. By Lemma 5.52,

every x ∈ D(0,r](V )ψ=0 can be written uniquely as x =
p−1∑
i=1

[ε]iϕ(xi) with

xi =
d∑
j=1

xijej ∈ D(0,pr](V ). Suppose χ(γ) = 1+upn for u ∈ Z∗p and n = n(γ).

Then

(γ − 1)x =
p−1∑
i=1

[ε]i(1+up
n)ϕ(γ(xi))−

p−1∑
i=1

[ε]iϕ(xi)

=
p−1∑
i=1

[ε]iϕ
(
[ε]iup

n−1
γ(xi)− xi

)
:=

p−1∑
i=1

[ε]iϕfi(xi).

We claim that the map f : x 7→ [ε]up
n

γ(x)−x is invertible in D(0,r](V ) for
r < min{rV , p−n}, u ∈ Z∗p and n is sufficiently large. Indeed, as the action of γ
is continuous, we may assume v(0,r]((γ − 1)ej) ≥ 2v(π) for every j = 1, · · · , d
for n sufficiently large. Then

f(x)
[ε]upn − 1

=
[ε]up

n

[ε]upn − 1
(γ(x)− x),

and

γ(x)− x =
d∑
j=1

(γ(xj)− xj)γ(ej) +
d∑
j=1

xj(γ(ej)− ej),

therefore by Lemma 5.51,

v(0,r]

(
f(x)

[ε]upn − 1

)
≥ v(0,r](x) + 2v(π)

for every x ∈ D(0,r](V ). Thus
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g(x) = ([ε]up
n

− 1)−1
+∞∑
k=0

(
1− f

[ε]upn − 1

)k
is the inverse of f and moreover,

v(0,r]

(
g(x)− x

[ε]upn − 1

)
≥ v(0,r](x) + v(π).

By the above claim, we see that if n� 0, r > min{p−1rV , p
n}, then γ − 1

has a continuous inverse
p−1∑
i=1

[ε]iϕ−1 ◦ f−1
i in D(0,r](V )ψ=0 and

v(0,r]((γ − 1)−1(x)) ≥ v(0,r](x)− pnv(π)− CV

for some constant CV . In general, if γp − 1 is invertible in D(0,r](V )ψ=0

for r < min{p−1rV , p
−n−1}, we just set (γ − 1)−1(x) = ϕ−1 ◦ (γp −

1)−1(1 + · · · + γp−1)(ϕ(x)), which is an inverse of γ − 1 in D(0,r](V )ψ=0 for
r < min{p−1rV , p

−n}. The proposition follows inductively. ut

Theorem 5.55. The quadruple

Λ̃ = Ã(0, 1], v = v(0, 1], G0 = GK0 , ΛHL,n
= ϕ−n(A(0, 1]

L )

satisfies Tate-Sen’s conditions.

Proof. We need to check the conditions (TS1)-(TS3).
(TS1). Let L ⊃M ⊃ K0 be finite extensions, for α = [π̄L](

∑
τ∈HM/HL

τ([π̄L]))−1,
then for all n, ∑

τ∈HM/HL

τ(ϕ−n(α)) = 1,

and
lim

n→+∞
v(0, 1](ϕ−n(α)) = 0.

(TS2). First ΛHL,n = A
(0,1]
L,n . Suppose pnrL ≥ 1. We can define RL, n by

the following commutative diagram:

RL,n : Ã
(0,1]
L

// A(0,1]
L,n

A
(0,1]
L,n+k

ϕ−n◦ψk◦ϕn+k

;;xxxxxxxx?�

OO

One verifies that ϕ−n ◦ ψk ◦ ϕn+k does not depend on the choice of k, using
the fact ψϕ = Id. By definition, for x ∈

⋃
k≥0A

(0,1]
L,n+k, we immediately have:

(a) RL,n ◦RL,n+m = RL,n; (b) If x ∈ A(0,1]
L,n , RL,n(x) = x; (c) RL,n is A(0,1]

L,n+k-
linear; (d) lim

n→+∞
RL,n(x) = x.



5.3 Overconvergent rings and overconvergent representations 161

Furthermore, for x = ϕ−n−k(y) ∈ A(0,1]
L,n+k,

RL,n(x) = ϕ−n(ψk(y)) = ϕ−n−k(ϕk ◦ ψk(y)).

Write y uniquely as
∑pk−1
i=0 [ε]iϕk(yi), then by Corollary 4.30, ψk(y) = y0.

Thus

v(0,1](RL,n(x)) = v(0,1](ϕ−n(y0)) ≥ v(0,1](ϕ−n−k(y)) = v(0,1](x).

By the above inequality, RL,n is continuous and can be extended to Λ̃ as⋃
k≥0A

(0,1]
L,n+k is dense in Ã(0,1] and the condition (TS2) is satisfied. Let

R∗L,n(x) = RL,n+1(x)−RL,n(x), then

R∗L,n(x) = ϕ−n−1(1− ϕψ)(ψk−1(y)) ∈ ϕ−n−1((A(0,1])ψ=0),

thus

R∗L,n(x) ∈ ϕ−n−1((A(0,1]
L )ψ=0) ∩ Ã(0,1] =ϕ−n−1((A(0,1]

L )ψ=0 ∩ Ã(0,p−n−1])

=ϕ−(n+1)((A(0,p−(n+1)]
L )ψ=0).

(TS3). For an element x such that RL,n(x) = 0, we have

x =
+∞∑
i=0

R∗L,n+i(x), where R∗L,n+i(x) ∈ ϕ−(n+i+1)((A(0,p−(n+i+1)]
L )ψ=0).

Apply Proposition 5.53 on (A(0,p−(n+i+1)]
L )ψ=0, then if n is sufficiently large,

one can define the inverse of γ − 1 in (RL,n − 1)Λ̃ as

(γ − 1)−1(x) =
+∞∑
i=0

ϕ−(n+i+1)(γ − 1)−1(ϕn+i+1R∗L,n+i(x))

and for x ∈ (RL,n − 1)Λ̃,

v((γ − 1)−1x) ≥ v(x)− C,

thus (TS3) is satisfied. ut

Theorem 5.56 (Cherbonnier-Colmez [CC98]). All (Zp- or Qp) repre-
sentations of GK are overconvergent.

Proof. One just needs to show the case for Zp-representations. The Qp-
representation case follows by ⊗ZpQp.

For (Λ̃, v,G0, ΛHL,n) as in the aove Theorem, Sen’s method (§3.4, in par-
ticular Proposition 3.46) implies that for any continuous cocycle σ 7→ Uσ
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in H1
cont(G0,GLd(Λ̃)), there exists an n > 0, M ∈ GLd(Λ̃) such that

Vσ ∈ GLd(A
(0,1]
K,n ) for χ(σ)� 0 and Vσ is trivial in H ′K .

If V is a Zp-representation of GK , pick a basis of V over Zp, let Uσ be
the matrix of σ ∈ GK under this basis, then σ 7→ Uσ is a continuous cocycle
with values in GLd(Zp). Now the fact V (D(V )) = V means that the image
of H1

cont(H
′
K ,GLd(Zp)) → H1

cont(H
′
K ,GLd(A)) is trivial, thus there exists

N ∈ GLd(A) such that the cocycle σ 7→ Wσ = N−1Uσσ(N) is trivial over
H ′K . Let C = N−1M , then C−1Vσσ(C) = Wσ for σ ∈ GK . As Vσ and Wσ

is trivial in H ′K , we have C−1Vγγ(C) = Wγ . Apply Lemma 3.45, when n is
sufficiently large, C ∈ GLd(A

(0,1]
K,n ) and thus M = NC ∈ GLd(A

(0,1]
K,n ).

Translate the above results to results about representations, there exists
an n and an A(0,1]

K,n -module D(0,1]
K,n ⊂ Ã(0,1]

⊗
V such that

Ã(0,1] ⊗
A

(0,1]
K,n

D
(0,1]
K,n

∼−→ Ã(0,1] ⊗ V.

Moreover, one concludes that D(0,1]
K,n ⊂ ϕ−n(D(V )) and ϕn(D(0,1]

K,n ) ⊂ D(V ) ∩
ϕn(Ã(0,1]

⊗
V ) = D(0, p−n](V ). We can just take rV = p−n. ut

5.3.4 The ring B̃]0,r].

(XX: to be fixed) One can extend v(0,r] to B̃(0,r] = Ã(0,r][ 1p ] by setting
v(0,r](x) = infk≥k0(v(xk) + k

r ) if x =
∑+∞
k=k0

pk[xk]. Moreover, for 0 < s ≤ r,
and x ∈ B̃(0,r], set

v(0,r](x) := min(v(0,s](x), v(0,r](x)). (5.15)

One sees that if x ∈ Ã(0,r], then v[s,r](x) = v(0,r](x), however, there is no
simple formula related v[s,r](pkx) to v[s,r](x).

Let B̃]0,r] be the completion of B̃(0,r] by the Fréchet topology induced by
the family of semi-valuations v[s,r] for 0 < s ≤ r. Since one has v[s1,r](x) ≥
v[s2,r](x) if r ≥ s1 ≥ s2 > 0, it suffices to take a sequence sn tending to 0
instead of all s ∈ (0, r] for the definition of the topology of B̃]0,r]. In particular,
this topology is defined by a countable family of semi-valuations, which implies
that B̃]0,r] is metrizable. Hence a sequence xn converges in B̃]0,r] if and only
if for whatever s ∈ (0, r], the sequence v[s,r](xn+1 − xn) tends to +∞ as n
tends to +∞.

We define B̃]0,r]
L = (B̃]0,r])HL , B]0,r] = B̃]0,r] ∩ B and B

]0,r]
L = B̃

]0,r]
L ∩ B.

Then B̃(0,r]
L (resp. B(0,r], B(0,r]

L ) is dense in B̃]0,r]
L (resp. B]0,r], B]0,r]

L ) and its
completion by the semi-valuations v[s.r] for 0 < s ≤ r is B̃]0,r]

L (resp. B]0,r],
B

]0,r]
L ).
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Lemma 5.57. If x =
+∞∑
k=0

pk[xk] is a unit in the ring of integers of Ã(0,r]

satisfying v(x0− 1) > 0, then the series log x =
+∞∑
n=1

(−1)n−1

n (x− 1)n converges

in B̃]0,r].

Proof. Suppose α = v(0,r](x − 1). The hypothesis for x implies that α > 0.
Then for every s ∈ (0, r], v[s,r](x− 1) = α and hence

v[s,r]
( (−1)n−1

n
(x− 1)n

)
≥ v[s,r]

( (−1)n−1

n

)
+nv[s,r](x− 1) = nα− vp(n)

s

tends to +∞ as n tends to ∞. This concludes the proof. ut

By Proposition 5.45, since B]0,r]
L is the completion of B(0,r]

L by the family
of semi-valuations v[s,r] (s ∈ (0, r]), we have the following result.

Proposition 5.58. If 0 < r < rL, the map f 7→ f(π̃L) induces an isomor-
phism from the ring of analytic functions (with coefficients in F ′) on the
annulus 0 < vp(T ) ≤ rv(πL) to B]0,r]

L .

Lemma 5.59. Suppose q = π−1
ε ϕ(πε). If r < 1, then v(0,r]( qp − 1) =

min( p
p−1 , p−

1
r ).

Proof. One has q
p − 1 =

p∑
k=2

p−1
(
p
k

)
πk−1
ε . By Proposition 5.45,

v(0,r]
(q
p
− 1
)

=
1
r

min
2≤k≤p

(
vp

(
p−1

(
p

k

))
+ (k − 1)

rp

p− 1

)
,

and hence the result. ut

Corollary 5.60. (1) If i ∈ N and r > 0, then v(0,r](ϕ
i(q)
p −1) = min(p

i+1

p−1 , p
i−

1
r ).

(2) If i ∈ N and r > s > 0, then v[s,r](ϕ
i(q)
p − 1) = min(p

i+1

p−1 , p
i − 1

s ).

(3) When i tends to +∞, ϕi(q)
p tends to 1 on B

]0,r]
K0

for every r > 0.

(4) When i tends to +∞, pit
ϕi(πε) tends to 1 on B

]0,r]
K0

for every r > 0.

Proof. (1) follows from the previous lemma and the formula v(0,r](ϕi(x)) =
piv(0,pir](x). (2) is a consequence of (1) and the definition of v[s,r]. (3) follows
from (2) and the definition of the topology on B]0,r]

K0
. (4) follows from (3) and

the formula pit
ϕi(πε) =

∏+∞
n=i+1

ϕn(q)
p . ut

Lemma 5.61. If i ∈ N, then

θ

(
ϕ−n

(
ϕi−1(πε) ·

pit

ϕi(ε)

))
=

{
ε(1) − 1, if n = i;
0, if n 6= i.

(5.16)
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Proof. This is clear. ut

Proposition 5.62. Suppose r > 0 and n ≥ n0(L) + 1 satisfying pnr ≥ 1. If
(xi)i≥n is a sequence of elements in Lcyc with xi ∈ Li for every i ≥ n, then
there exists x ∈ B]0,r]

L such that θ(ϕ−i(x)) = xi for all i ≥ n.

Proof. Suppose (ai)i≥n is a sequence of elements in N tending to +∞ as i
tends to +∞ such that paixi ∈ OLi

for every i ≥ n. Suppose

zi = (ε(1) − 1) · paixi ·
(

p

(ε(i) − 1)(p−1)pi−1

)ai

∈ OLi
,

and suppose ut

Proposition 5.63. Suppose r > 0 and n ≥ n0(L) + 1 satisfying pnr ≥ 1.
Then for an element in B

]0,r]
L the following conditions are equivalent:

(1) θ(ϕ−i(x)) = 0 for every i ≥ n;
(2) x ∈ t

ϕn−1(πε)B
]0,r]
L .

Proof. (2) ⇒ (1) is obvious. To prove the other direction, ut

Corollary 5.64. Suppose r > 0 and n ≥ n0(L) + 1 satisfying pnr ≥ 1. Then
the map x 7→ (θ(ϕ−i(x)))i≥n induces an exact sequence

0 −→ t

ϕn−1(πε)
B

]0,r]
L −→ B

]0,r]
L −→

∏
i≥n

Li −→ 0.

Proposition 5.65. If r < 0 and p−nr < rL, then RL,n : Ã(0,r]
L → A

(0,r]
L,n ex-

tends by Qp-linearity and continuity to a map RL,n : B̃]0,r]
L → B

]0,r]
K,n , the

general term RK,n(x) tends to x in B̃
]0,r]
L and one has v[s,r](RK,n(x)) ≥

v[s,r](x)− CL(r) if s ∈ (0, r] and x ∈ B̃]0,r].

Proposition 5.66. If L is a finite extension of K0, then H1(HL, B̃
(0,r]) = 0.

Proof. Suppose σ 7→ cσ is a continuous 1-cocycle over HL, with values in
B̃(0,r]. Suppose (sn)n∈N is a sequence of elements in (0, r] which tends 0 as n
tends to +∞. We construct by induction over n ≥ −1 a sequence of elements
in B̃(0,r] satisfying the following conditions:

(i) v[sj ,r]

ut
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Semi-stable p-adic representations

6.1 The rings Bcris and Bst

In this section, we shall define two rings of periods Bcris and Bst such that

Qp ⊂ Bcris ⊂ Bst ⊂ BdR

and they are (GK ,Qp)-regular.

6.1.1 The ring Bcris.

Recall
W (R)� _

��

θ // OC� _

��
W (R)[ 1p ]

θ // C

we know Ker θ = (ξ) where ξ = [$] + p = ($, 1, · · · ), $ ∈ R such that
$(0) = −p.

Definition 6.1. (1) The module A0
cris is defined to be the divided power en-

velope of W (R) with respect to Ker θ, that is, by adding all elements am

m! for
all a ∈ Ker θ.

(2) The module Acris is defined to be lim←−
n∈N

A0
cris/p

nA0
cris.

(3) The module B+
cris is defined to be Acris

[
1
p

]
.

Remark 6.2. By definition, A0
cris is just the sub W (R)-module of W (R)

[
1
p

]
generated by the ωn(ξ) = ξn

n! , n ∈ N, i.e.,

A0
cris =

{ N∑
n=0

anωn(ξ), N < +∞, an ∈W (R)
}
⊂W (R))

[1
p

]
. (6.1)
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It is actually a ring since

ωm(ξ) · ωn(ξ) =
(
m+ n

n

)
ξm+n

(m+ n)!
=
(
m+ n

n

)
ωm+n(ξ). (6.2)

Thus Acris and B+
cris are all rings.

Remark 6.3. The module A0
cris/p

nA0
cris is just the divided power envelop of

Wn(OK/p) related to the homomorphism θn : Wn(OK/p)→ OK/pn.

The map A0
cris → Acris is injective. Thus we regard A0

cris as a subring of
Acris. Since A0

cris ⊂ W (R)
[

1
p

]
, by continuity Acris ⊂ B+

dR and B+
cris ⊂ B+

dR.
We have

A0
cris� _

��

� � // Acris� p

!!DD
DD

DD
DD

D
� � // B+

cris� _

��
W (R)[ 1p ]

� � // B+
dR

and

Acris =
{+∞∑
n=0

anωn(ξ), an → 0 p-adically in W (R)
}
⊂ B+

dR, (6.3)

B+
cris =

{ N∑
n=0

anωn(ξ), an → 0 p-adically in W (R)
[1
p

]}
⊂ B+

dR. (6.4)

However, one has to keep in mind that the expression of an element α ∈ Acris

(resp. B+
cris) in above form is not unique.

The ring homomorphism θ : W (R) → OC can be extended to A0
cris, and

thus to Acris:
W (R)

θ

""EE
EE

EE
EE

E� _

��
A0

cris� _

��

θ
// OC

Acris

θ

<<xxxxxxxxx

Proposition 6.4. The kernel

Ker (θ : Acris → OC)

is a divided power ideal, which means that, if a ∈ Acris such that θ(a) = 0,
then for all m ∈ N,m ≥ 1, am

m! (∈ B
+
cris) is again in Acris and θ(a

m

m! ) = 0.
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Proof. If a =
∑
anωn(ξ) ∈ A0

cris, then

am

m!
=

∑
sum of in=m

∏
n

an
ξnin

(n!)in(in)!
.

We claim that for (ni)!
(n!)ii! ∈ N for n ≥ 1 and i ∈ N . This fact is trivially true

for i = 0. If ni > 0, (ni)!
(n!)ii! can be interpreted combinatorially as the number

of choices to put ni balls into i unlabeled boxes. Thus

am

m!
=

∑
sum of in=m

∏
n

an ·
(nin)!

(n!)in(in)!
· ωnin(ξ) ∈ A0

cris

and θ(a
m

m! ) = 0.
The case for a ∈ Acris follows by continuity. ut
We then have a ring homomorphism

θ̄ : Acris
θ→ OC → OC/p = OK/p.

Proposition 6.5. The kernel Ker (θ̄) = (Ker θ, p) is again a divided power
ideal, which means that, if a ∈ Ker (θ̄), then for all m ∈ N, m ≥ 1, a

m

m! ∈ Acris

and θ̄(a
m

m! ) = 0.

Proof. This is an easy exercise, noting that p divides pm

m! in Zp. ut
Recall that

t =
+∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
∈ B+

dR.

Proposition 6.6. One has t ∈ Acris and tp−1 ∈ pAcris.

Proof. Since [ε]−1 = bξ, b ∈W (R), ([ε]−1)n

n = (n−1)!bnωn(ξ) and (n−1)!→
0 p-adically, hence t ∈ Acris.

To show tp−1 ∈ pAcris, we just need to show that ([ε] − 1)p−1 ∈ pAcris.
Note that [ε]− 1 = (ε− 1, ∗, · · · ), and

(ε− 1)(n) = lim
m→+∞

(ζpn+m − 1)p
m

where ζpn = ε(n) is a primitive n-th root of unity. Then v((ε − 1)(n)) =
1

pn−1(p−1) and

(ε− 1)p−1 = (pp, 1, · · · )× unit = $p · unit.

Then

([ε]− 1)p−1 ≡ [$p] · (∗) = (ξ − p)p · (∗) ≡ ξp · (∗) mod pAcris,

but ξp = p(p− 1)!ωp(ξ) ∈ pAcris, we hence have the result. ut
Definition 6.7. We define Bcris := B+

cris[1/t] = Acris[1/t], then Bcris ⊂ BdR.

Remark 6.8. The rings Acris, B+
cris, Bcris are all stable under the action of GK .
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6.1.2 The Frobenius map ϕ on Bcris.

Recall on W (R), we have a Frobenius map

ϕ((a0, a1, · · · , an, · · · )) = (ap0, a
p
1, · · · , apn, · · · ).

For all b ∈W (R), ϕ(b) ≡ bp mod p, thus

ϕ(ξ) = ξp + pη = p(η + (p− 1)!ωp(ξ)), η ∈W (R),

and ϕ(ξm) = pm(η + (p− 1)!ωp(ξ))m. Therefore we can define

ϕ(ωm(ξ)) =
pm

m!
(η + (p− 1)!ωp(ξ))m ∈W (R)[ωp(ξ)] ⊂ A0

cris.

As a consequence,
ϕ(A0

cris) ⊂ A0
cris.

By continuity, ϕ is extended to Acris and B+
cris. Then

ϕ(t) = log([εp]) = log([ε]p) = p log([ε]) = pt,

hence ϕ(t) = pt. Consequently ϕ is extended to Bcris by setting ϕ( 1
t ) = 1

pt .
The action of ϕ commutes with the action ofGK : for any g ∈ GK , b ∈ Bcris,

ϕ(gb) = g(ϕb).

6.1.3 The logarithm map.

We first recall the construction of the classical p-adic logarithm

logp : C∗ → C.

Using the key fact
log(xy) = log x+ log y,

the construction is processed in four steps:

- For those x satisfying v(x− 1) ≥ 1, set

log x :=
∞∑
n=0

(−1)n+1 (x− 1)n

n
. (6.5)

- In general, for any x ∈ 1 + mC = {x ∈ C | v(x − 1) > 0}, there exists
m ∈ N such that v(xp

m − 1) ≥ 1, then set

log x :=
1
pm

log(xp
m

). (6.6)
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- For any a ∈ O∗C , then ā ∈ k̄ and ā 6= 0. One has a decomposition

a = [ā]x,

where ā ∈ k̄∗, [ā] ∈W (k̄) and x ∈ 1 + mC . We let

log a := log x. (6.7)

- Moreover, for any x ∈ C with v(x) = r
s , r, s ∈ Z, s ≥ 1, we see that

v(xs) = r = v(pr) and xs

pr = y ∈ O∗C . By the relation

log(
xs

pr
) = log y = s log x− r log p,

to define log x, it suffices to define log p. In particular, if let logp p = 0,
then

logp x :=
1
s

logp y =
1
s

log y. (6.8)

We now define the logarithm map in (FrR)∗ with values in BdR. Similar
to the classical case, one needs the key rule:

log[xy] = log[x] + log[y].

Recall that
U+
R = 1 + mR = {x ∈ R | v(x− 1) > 0},

U+
R ⊃ U

1
R = {x ∈ R | v(x− 1) ≥ 1},

For any x ∈ U+
R , there exists m ∈ N, m ≥ 1, such that xp

m ∈ U1
R. Choose

x ∈ U1
R, then the Teichmüller representative of x is [x] = (x, 0, · · · ) ∈W (R).

(1) We first define the logarithm map on U1
R by

log[x] :=
∞∑
n=0

(−1)n+1 ([x]− 1)n

n
, x ∈ U1

R. (6.9)

This series converges in Acris, since

θ([x]− 1) = x(0) − 1,

which means that x ∈ U1
R or equivalently, θ̄([x]− 1) = 0. Therefore ωn([x]−

1) = ([x]−1)n

n! ∈ Acris and

log[x] =
∞∑
n=0

(−1)n+1(n− 1)!ωn([x]− 1)

converges since (n− 1)!→ 0 when n→∞.
(2) The logarithm map on U1

R
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log : U1
R → Acris, x 7→ log[x]

extends uniquely to the logarithm map on U+
R with values in B+

cris by

log : U+
R → B+

cris, log[x] :=
1
pm

log[xp
m

] (m� 0). (6.10)

By definition, for every x ∈ U+
R , one can check

ϕ(log[x]) = p log[x].

Furthermore, if denote by U the image of log : U+
R → B+

cris, then we have the
following diagram with exact rows:

0 // Qp(1) // U+
R

//

∼=
��

C // 0

0 // Qp · t //
� _

��

U //
� _

��

C // 0

0 // Fil1BdR
// B+

dR
// C // 0

where the first row exact sequence comes from Proposition 4.15, the isomor-
phism U+

R ' U follows from the fact that for x = (x(n)) ∈ U+
R , log x(0) = 0 ∈ C

if and only if x(0) ∈ µµµp∞(K). As a result,

U ∩ Fil1BdR = Qpt = Qp(1), U + Fil1BdR = B+
dR. (6.11)

and ϕu = pu for all u ∈ U .

Remark 6.9. We shall see later in Theorem 6.26 that U = {u ∈ B+
cris | ϕu =

pu}.

(3) For a ∈ R∗, we define

log[a] := log[x] (6.12)

by using the decomposition R∗ = k̄∗ × U+
R , a = a0x for a0 ∈ k̄∗, x ∈ U+

R .
(4) Finally, we can extend the logarithm map to

log : (FrR)∗ → B+
dR, x 7→ log[x].

Recall the element $ ∈ R is given by $(0) = −p, v($) = 1. For any x ∈
(FrR)∗ with v(x) = r

s , r, s ∈ Z, s ≥ 1, then xs

$r = y ∈ R∗. Hence the relation

log(
xs

$r
) = log y = s log x− r log$,

implies that
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log[x] =
1
s
(r log[$] + log[y]).

Thus in order to define log[x], it suffices to define log[$].
For [$] ∈W (R) ⊂W (R)[ 1p ]

θ→ C, consider [$]
−p , note that

θ

(
[$]
−p

)
=
−p
−p
− 1 = 0,

then

log
(

[$]
−p

)
=
∞∑
i=0

(−1)n+1
( [$]
−p − 1)n

n
= −

∞∑
i=0

ξn

npn
∈ B+

dR

is well defined. Set

log[$] := log
(

[$]
−p

)
=
∞∑
i=0

(−1)n+1
( [$]
−p − 1)n

n
∈ B+

dR, (6.13)

then we get the desired logarithm map log : (FrR)∗ → B+
dR for any x ∈

(FrR)∗. Note that

- For every g ∈ GK , g$ = $εχ(g), then

log([g$]) = log[$] + χ(g)t,

as log[ε] = t.
- The kernel of log is just k̄∗. The short exact sequence

0−→U+
R−→(FrR)∗/k̄∗−→Q−→0

shows that the sub-Qp-vector space of B+
dR generated by the image of the

logarithm map log is U ⊕Qp log[$].

6.1.4 The ring Bst.

Definition 6.10. The ring Bst := Bcris[log[$]] is defined to be the sub Bcris-
algebra of BdR generated by log[$].

Clearly Bst is stable under the action of GK (even of GK0). Moreover,
denote by Ccris and Cst the fraction fields of Bcris and Bst respectively, then
both Ccris and Cst are stable under the actions of GK and GK0 , and the
Frobenius map ϕ on Bcris extends to Ccris.

Proposition 6.11. log[$] is transcendental over Ccris.

We need a lemma:

Lemma 6.12. The element log[$] is not contained in Ccris.
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Proof. Let β = ξ/p, then ξ and β are both inside Fil1BdR but not Fil2BdR.
Let S = W (R)[[β]] ⊂ B+

dR be the subring of power series
∑
anβ

n with coeffi-
cients an ∈ W (R). For every n ∈ N, let Fili S = S ∩ FiliBdR, then Fili S is a
principal ideal of S generated by βi. We denote

θi : FiliBdR −→ OC

the map sending βiα to θ(α). One knows that θi(Fili S) = OC .
By construction, Acris ⊂ S and hence Ccris = FracAcris ⊂ Frac(S). We

show that if α ∈ S is not zero, then α log[$] /∈ S, which is sufficient for the
lemma.

Since S is separated by the p-adic topology, it suffices to show that if
r ∈ N and α ∈ S−pS, then prα log[$] /∈ S. If a ∈W (R) satisfies θ(a) ∈ pOC ,
then a ∈ (p, ξ)W (R) and hence a ∈ pS. Therefore one can find i ≥ 0 and
bn ∈W (R) such that θ(bi) /∈ OC and

α = p
( ∑
0≤n<i

bnβ
n
)

︸ ︷︷ ︸
A

+
∑
n≥i

bnβ
n

︸ ︷︷ ︸
B

.

Note that log[$] = −
∑
βn/n. Suppose j > r is an integer such that pj > i. If

prα log[$] ∈ S, one has α ·
∑
n>0

pj−1βn/n ∈ S. Note that α ·
∑

0<n<pj

pj−1βn/n ∈

S, then

A ·
∑
n≥pj

pj−1βn/n ∈ Filp
j+1

BdR, B ·
∑
n>pj

pj−1βn/n ∈ Fili+p
j+1BdR

and
βp

j

/p ·
∑
n>i

bnβ
n ∈ Fili+p

j+1BdR,

thus

biβ
i+pj

/p ∈ Fili+p
j

BdR ∩ (S + Fili+p
j+1BdR) = Fili+p

j

S + Fili+p
j+1BdR.

Now on one hand, θi+p
j

(biβi+p
j

/p) = θ(bi)/p /∈ OC ; on the other hand,

θi+p
j

(Fili+p
j

S + Fili+p
j+1BdR) = OC ,

we have a contradiction. ut

Proof (Proof of Proposition 6.11). If log[$] is not transcendental, suppose
c0 + c1X + · · ·+ cd−1X

d−1 +Xd is the minimal polynomial of log[$] in Ccris.
For g ∈ GK0 , we have g([$]/p) = ([$]/p) · [ε]χ(g) where χ is the cyclotomic
character, thus

g log[$] = log[$] + χ(g)t.
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Since Ccris is stable by GK0 and for every g ∈ GK0 ,

g(c0) + · · ·+ g(cd−1)(log[$] + χ(g)t)d−1 + (log[$] + χ(g)t)d = 0.

By the uniqueness of minimal polynomial, for every g ∈ GK0 , g(cd−1) +
d · χ(g)t = cd−1. If let c = cd−1 + d log[$], one has g(c) = c, then c ∈
(BdR)GK0 = K0 ⊂ Bcris and thus log[$] = d−1(c − cd−1) ∈ Ccris, which
contradicts Lemma 6.12. ut

As an immediate consequence of Proposition 6.11, we have

Theorem 6.13. The homomorphism of Bcris-algebras

Bcris[x] −→ Bst

x 7−→ log[$]

is an isomorphism.

Theorem 6.14. (1) (Cst)GK = K0, thus

(B+
cris)

GK = (Bcris)GK = (Bst)GK = K0.

(2) The map

K ⊗K0 Bst → BdR

λ⊗ b 7→ λb.

is injective.

Proof. Note that Frac(K⊗K0Bcris) is a finite extension over Ccris, thus log[$]
is transcendental over Frac(K ⊗K0 Bcris). Therefore

K ⊗K0 Bst = K ⊗K0 Bcris[log[$]] = (K ⊗K0 Bcris)[log[$]]

and (2) is proved.
For (1), we know that

W (R)GK = W (RGK ) = W (k) = W,(
W (R)

[1
p

])GK = K0 = W
[1
p

]
,

and

W (R)[
1
p
] ⊂ B+

cris,

then

K0 ⊂ (B+
cris)

GK ⊂ (Bcris)GK ⊂ (Bst)GK ⊂ (Cst)GK ⊂ (BdR)GK = K.

Thus (1) follows from (2). ut
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6.1.5 The operators ϕ and N on Bst.

We extend ϕ to an endomorphism of Bst by requiring

ϕ(log[$]) = p log[$].

Then ϕ commutes with the action of GK .

Definition 6.15. The monodromy operator

N : Bst −→ Bst∑
n∈N

bn(log[$])n 7−→ −
∑
n∈N

nbn(log[$])n−1

is the unique Bcris-derivation such that N(log[$]) = −1.

As a consequence of Theorem 6.13, we have

Proposition 6.16. The sequence

0 −→ Bcris−→Bst
N−→ Bst −→ 0 (6.14)

is exact.

Proposition 6.17. The monodromy operator N satisfies:
(1) gN = Ng for every g ∈ GK0 ;
(2) Nϕ = pϕN .

Proof. Using g(log[$]) = log[$]+χ(g)t, and N(χ(g)t) = 0 since χ(g)t ∈ Bcris,
we get that

N(gb) = g(Nb), for all b ∈ Bst, g ∈ GK0 .

Since

Nϕ(
∑
n∈N

bn(log[$])n) =N(
∑
n∈N

ϕ(bn)pn(log[$])n)

=
∑
n∈N

nϕ(bn)pn(log[$])n−1

=pϕN(
∑
n∈N

bn(log[$])n),

we have Nϕ = pϕN . ut

6.2 Some properties about Bcris.

6.2.1 Some ideals of W (R).

For every subring A of BdR (in particular, A = W (R), W (R)[ 1p ], WK(R) =
W (R)[ 1p ]⊗K0 K, Acris, B+

cris, Bcris), and for every r ∈ Z, we let Filr A = A ∩
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Filr BdR. In particular, one has Fil0A = A∩B+
dR and denotes θ : Fil0A→ C

the restriction of the projection B+
dR → C.

If A is a subring of Bcris stable by ϕ, and if r ∈ Z, we let I [r]A = {a ∈ A |
ϕn(A) ∈ Filr A for n ∈ N}. If I [0]A = A, i.e., A ⊆ B+

dR (which is the case for
A = W (R), W (R)[ 1p ], Acris or B+

cris), then {I [r]A : r ∈ N} forms a decreasing
sequence of ideals of A. In this case we also write I [1]A = IA.

For any x ∈ W (R), we write x′ = ϕ−1(x), we also denote x̄ ∈ R the
reduction of x modulo p. Then for πε = [ε] − 1, one has π′ε = [ε′] − 1. Write
πε = π′ε ·τ where τ = 1+[ε′]+· · ·+[ε′]p−1. Note that θ(τ) =

∑
0≤i≤p−1

(ε(1))i = 0

and
τ̄ = 1 + ε′ + · · ·+ ε′p−1 =

ε− 1
ε′ − 1

and v(τ̄) = p
p−1 −

1
p−1 = 1, therefore τ is a generator of Ker θ.

Proposition 6.18. For every r ∈ N,
(1) The ideal I [r]W (R) is the principal ideal generated by πrε . In particular,

I [r]W (R) is the r-th power of IW (R).
(2) For every element a ∈ I [r]W (R), a generates the ideal if and only if

v(ā) = rp
p−1 .

We first show the case r = 1, which is the following lemma:

Lemma 6.19. (1) The ideal IW (R) is principal, generated by πε.
(2) For every element a = (a0, a1, · · · ) ∈ IW (R), a generates the ideal if

and only if v(a0) = p
p−1 and one has v(an) = p

p−1 for every n ∈ N.

Proof. For a = (a0, · · · , an, · · · ) ∈ IW (R), let αn = a
(n)
n , then for every

m ∈ N,

θ(ϕma) =
∑

pnαp
m

n = αp
m

0 + · · ·+ pmαp
m

m + pm+1αp
m

m+1 + · · · = 0.

We claim that for any pair (r,m) ∈ N × N, one has v(αm) ≥ p−m(1 + p−1 +
· · ·+ p−r). This can be shown by induction to the pair (r,m) ordered by the
lexicographic order:

(a) If r = m = 0, θ(a) = α0 (mod p), thus v(α0) ≥ 1;
(b) If r = 0, but m 6= 0, one has

0 = θ(pma) =
m−1∑
n=0

pnαp
m

n + pmαp
m

m (mod pm+1);

by induction hypothesis, for 0 ≤ n ≤ m − 1, v(αn) ≥ p−n, thus v(pnαp
m

n ) ≥
n+ pm−n ≥ m+ 1, and v(pmαp

m

m ) ≤ m+ 1, therefore v(αm) ≥ pm;
(c) If r 6= 0, one has

0 = θ(pma) =
m−1∑
n=0

pnαp
m

n + pmαp
m

m

∞∑
n=m+1

pnαp
m

n ;

by induction hypothesis,
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- for 0 ≤ n ≤ m− 1, v(αn) ≥ p−n(1 + p−1 + · · · p−r), thus

v(pnαp
m

n ) ≥ n+ pm−n(1 + · · · p−r) ≥ m+ (1 + · · · p−r);

- for n ≥ m+ 1, v(αn) ≥ p−n(1 + · · · p−r+1), thus

v(pnαp
m

n ) ≥ n+ pm−n(1 + · · · p−r+1) ≥ m+ (1 + · · · p−r);

one thus has v(αm) ≥ p−m(1 + · · ·+ p−r.
Now by the claim, if a ∈ IW (R), v(αn) ≥ pn · p

p−1 , thus v(an) ≥ p
p−1 .

On the other hand, for any n ∈ N, θ(ϕnπε) = θ([ε]p
n − 1) = 0, thus

πε ∈ IW (R). As v(ε−1) = p
p−1 , the above claim implies that IW (R) ⊆ (πε, p).

But the set (OC)N is p-torsion free, thus if px ∈ IW (R), then x ∈W (R). Hence
IW (R) = (πε) and we have the lemma. ut

Proof (Proof of the Proposition). Let griW (R) = FiliW (R)/Fili+1W (R)
and let θi be the projection from FiliW (R) to griW (R). As FiliW (R) is
the principal ideal generated by τ i, griW (R) is a free OC-module of rank 1
generated by θi(τ i) = θ1(τ)i. Note that πε = π′ετ , then

ϕn(πε) = π′ετ
1+ϕ+···+ϕn

for every n ∈ N.

For i ≥ 1, θ(ϕi(τ)) = p, hence θ1(ϕn(πε)) = pn(ε(1) − 1) · θ1(τ).
Proof of (1): The inclusion πrεW (R) ⊆ I [r] is clear. We show πrεW (R) ⊇ I [r]

by induction. The case r = 0 is trivial. Suppose r ≥ 1. If a ∈ I(r)W (R), by
induction hypothesis, we can write a = πr−1

ε b with b ∈W (R). We know that
θr−1(ϕn(a)) = 0 for every n ∈ N. But

θr−1(ϕn(a)) = θ(ϕn(b))·(θ1(ϕn(πε)))r−1 = (pn(ε(1)−1))r−1·θ(ϕn(b))·θ1(τ)r−1.

Since θ1(τ)r−1 is a generator of grr−1W (R) and since pn(ε(1) − 1) 6= 0, one
must have θ(ϕn(b)) = 0 for every n ∈ N, hence b ∈ IW (R). By the precedent
lemma, there exists c ∈W (R) such that b = πεc. Thus a ∈ πrεW (R).

Proof of (2): It follows immediately from that v(πrε) = rv(ε − 1) = rp
p−1 ,

and that x ∈W (R) is a unit if and only if x̄ is a unit in R, i.e. if v(x̄) = 0. ut

6.2.2 A description of Acris.

For every n ∈ N, we write n = r(n) + (p − 1)q(n) with r(n), q(n) ∈ N and
0 ≤ r(n) < p− 1. Let

t{n} = tr(n)γq(n)(tp−1/p) = (pq(n) · q(n)!)−1 · tn.

Note that if p = 2, t{n} = tn/(2nn!). We have shown that tp−1/p ∈ Acris,
therefore t{n} ∈ Acris. Let Λε be a subring of K0[[t]] formed by elements of
the form

∑
n∈N

ant
{n} with an ∈ W = W (k) converging p-adically to 0. Let
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Sε = W [[πε]] be the ring of power series of πε with coefficients in W . One can
identify Sε as a sub-W -algebra of Λε, since

πε = et − 1 =
∑
n≥1

tn

n!
=
∑
n≥1

cnt
{n},

where cn = pq(n)q(n)!/n!, by a simple calculation, cn tends to 0 as n tends to
infinity.

Both Sε and Λε are subrings of Acris, stable by the actions of ϕ and of
GK0 which factors through ΓK0 = Gal(Kcyc

0 /K0). We see that

t = log([ε]) = πε ·
∑
n≥0

(−1)n
πnε
n+ 1

= πε · u,

where u is a unit in Λε.
Recall ∆K0 is the torsion subgroup of ΓK0 . Then the subfield of K0((t))

fixed by ∆K0 is K0((tp−1)) (resp. K((t2)) if p = 2). As a result, the ring Λ,
the subring of Λε fixed by ∆K0 , is formed by

∑
ant
{n} with an = 0 if p−1 - n

(resp. if 2 - n).
Let π0 be the trace from K0((t)) to K0((tp−1)) (resp. K0((t2)) if p = 2 )

of πε, then

π0 = (p− 1)
∑
n≥1
p−1|n

tn

n!
(resp. 2

∑
n≥1
2|n

tn

n!
).

One sees that the ring S, the subring of Sε fixed by ∆K0 , is then the ring of
power series W [[π0]]. One can easily check that π0 ∈ pΛ (resp. 8Λ), and there
exists v ∈ Λ such that π0/p = v · (tp−1/p) (resp. π0/8 = v · (t2/8)). One can
also see the evident identification Sε ⊗S Λ = Λε.

let q = p+π0 and let q′ = ϕ−1(q). Then q =
∑
a∈Fp

[ε][a] (resp. [ε] + [ε]−1)
where [a] is the Teichmüller representative of a.

Proposition 6.20. With the precedent notations,
(1) the element π0 is a generator of I [p−1]W (R) if p 6= 2 (resp. of I [2]W (R)

if p = 2).
(2) there exists a unit u ∈ S such that

ϕπ0 = uπ0q
p−1 if p 6= 2 (resp. uπ0q

2 if p = 2).

Proof. The case of p 6= 2 and p = 2 are analogous, we just show the case
p 6= 2.

Proof of (1): Let π be the norm of πε over the field extensionK0((t))/K0((tp−1)).
One has

π1 =
∏

h∈∆K0

h(πε) =
∏
a∈F∗p

([ε][a] − 1).

By Proposition 6.18, since [ε][a]−1 is a generator of IW (R), π1 is a generator
of I [p−1]W (R), one has v(π1) = (p − 1) p

p−1 = p = v(π0). Therefore one has
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W [[π0]] = W [[π1]]. We can write π0 =
∑
amπ

m
1 with am ∈ W and a1 is a

unit. Moreover, since a0 = θ(π0) = a0, π0 generates the same ideal as π1.
Proof of (2): Note that q′ and τ are two generators of the kernel of the

restriction of θ to S′ε = ϕ−1(Sε) = W [[π′ε]], thus

πε = ϕπ′ε = π′ετ = u′1π
′
εq
′

with u′1 a unit in S′ε. Then ϕπε = u1πεq and ϕ(πp−1
ε ) = up−1

1 πp−1
ε qp−1. Since

π0 and πp−1
ε are two generators of Sε ∩ I [p−1]W (R), ϕ(π0) = uπ0q

p−1 with u
a unit in Sε. Now the uniqueness of u and the fact that S = S

∆K0
ε imply that

u and u−1 ∈ S. ut

If A0 is a commutative ring, A1 and A2 are two A0 algebras such that A1

and A2 are separated and complete by the p-adic topology, we let A1⊗̂A0A2

be the separate completion of A1 ⊗A0 A2 by the p-adic topology.

Theorem 6.21. One has an isomorphism of W (R)-algebras

α : W (R)⊗̂SΛ −→ Acris

which is continuous by p-adic topology, given by

α(
∑

am ⊗ γm(
π0

p
) =

∑
amγm(

π0

p
).

The isomorphism α thus induces an isomorphism

αε : W (R)⊗̂SεΛε −→ Acris.

Proof. The isomorphism αε comes from

W (R)⊗̂Sε
Λε ∼= W (R)⊗̂Sε

Sε ⊗s Λ ∼= W (R)⊗̂SΛ

and the isomorphism α. We only consider the case p 6= 2 (p = 2 is analogous).
Certainly the homomorphism α is well defined and continuous as π0

p ∈
Fil1Acris, we are left to show that α is an isomorphism. Since both the source
and the target are rings separated and complete by p-adic topology without
p-torsion, it suffices to show that α induces an isomorphism on reduction
modulo p.

But Acris modulo p is the divided power envelope of R relative to an ideal
generated by q′, thus it is the free module over R/q′p with base the images
of γpm(q′) or γm( q

′p

p ). By the previous proposition, ϕ(π0) = uπ0q
p−1, thus

π0 = u′π′0q
′p−1 = u′(q′p− pq′p−1), which implies that R/q′p = R/π0 and Acris

modulo p is the free module over R/π0 with base the images of γm(π0
p ). It is

clear this is also the case for the ring W (R)⊗̂SΛ modulo p. ut
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6.2.3 The filtration by I [r].

Proposition 6.22. For every r ∈ N, suppose I [r] = I [r]Acris. Then if r ≥ 1,
I [r] is a divided power ideal of Acris which is the associated sub-W (R)-module
(and also an ideal) of Acris generated by t{s} for s ≥ r.

Proof. Suppose I(r) is the sub-W (R)-module generated by t{s} for s ≥ r. It
is clear that I(r) ⊆ I [r] and I(r) is a divided power ideal.

It remains to show that I [r] ⊆ I(r). We show this by induction on r. The
case r = 0 is trivial.

Suppose r ≥ 1 and a ∈ I [r]. The induction hypothesis allows us to write a
as the form

a =
∑
s≥r−1

ast
{s}

where as ∈W (R) tends p-adically to 0. If b = ar−1, we have a = bt{r−1} + a′

where a′ ∈ I(r) ⊆ I [r], thus bt{r−1} ∈ I [r]. But

ϕ(bt{r−1}) = p(r−1)n · ϕn(b) · t{r−1} = cr,n · ϕn(b) · tr−1

where cr,n is a nonzero rational number. Since tr−1 ∈ Filr−1−Filr, one has
b ∈ I [1] ∩W (R), which is the principal ideal generated by πε. Thus bt{r−1}

belongs to an ideal of Acris generated by πεt
{r−1}. But in Acris, t and πε

generate the same ideal as t = πε × (unit), hence bt{r−1} belongs to an ideal
generated by t · t{r−1}, which is contained in I(r). ut

For every r ∈ N, we let

Arcris = A/I [r], W r(R) = W (R)/I [r]W (R).

Proposition 6.23. For every r ∈ N, Arcris and W r(R) are of no p-torsion.
The natural map

ιr : W r(R) −→ Arcris

are injective and its cokernel is p-torsion, annihilated by pmm! where m is the
largest integer such that (p− 1)m < r.

Proof. For every r ∈ N, Acris/Filr Acris is torsion free. The kernel of the map

Acris → (Acris/Filr Acris)N x 7→ (ϕnxmod Filr)n∈N

is nothing by I [r], thus

Arcris ↪→ (Acris/Filr Acris)N

is torsion free. As ιr is injective by definition, W r(R) is also torsion free.
As W (R)-module, Arcris is generated by the images of γs(p−1π0) for 0 ≤

(p− 1)s < r, since pss!γs(p−1π0) ∈ W (R), and v(pss!) is increasing, we have
the proposition. ut
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For every subring A of Acris and for n ∈ N, write

Filr A = A ∩ Filr Acris, FilrpA = {x ∈ Filr A | ϕx ∈ prA}.

Proposition 6.24. For every r ∈ N,
(1) the sequence

0 −→ Zpt{r} −→ FilrpAcris
p−rϕ−1−−−−−→ Acris −→ 0

is exact.
(2) the ideal FilrpAcris is the associated sub-W (R)-module of Acris generated

by q′jγn(p−1tp−1), for j + (p− 1)n ≥ r.
(3) for m the largest integer such that (q−1)m < r, for every x ∈ Filr Acris,

pmm!x ∈ FilrpAcris.

Proof. Write ν = p−rϕ − 1. It is clear that Zpt{r} ⊆ Ker ν. Conversely, if
x ∈ Ker ν, then x ∈ I [r] and can be written as

x =
∑
s≥r

ast
{s}, as ∈W (R) tends to 0 p-adically.

Note that for every n ∈ N, (p−rϕ)n(x) ≡ ϕn(ar)t{r} (mod pnAcris), thus
x = bt{r} with b ∈W (R) and moreover, ϕ(b) = b, i.e. b ∈ Zp.

LetN be the associated sub-W (R)-module ofAcris generated by q′jγn( t
p−1

p ),
for j + (p− 1)n ≥ r. If j, n ∈ N, one has

ϕ(q′jγn(
tp−1

p
)) = qjpn(p−1)γn(

tp−1

p
) = pj+n(p−1)(1 +

π0

p
)jγn(

tp−1

p
),

thus N ⊆ FilrpAcris.
Since Zpt{r} ⊆ N , to prove the first two assertions, it suffices to show

that for every a ∈ Acris, there exists x ∈ N such that ν(x) = a. Since N and
Acris are separated and complete by the p-adic topology, it suffices to show
that for every a ∈ Acris, there exists x ∈ N , such that ν(x) ≡ a (mod p). If
a =

∑
n>r/p−1 anγn(

tp−1

p ) with an ∈W (R), it is nothing but to take x = −a.
Thus it remains to check that for every i ∈ N such that (p − 1)i ≤ r and

for b ∈ W (R), there exists x ∈ N such that ν(x) − bγi( t
p−1

p ) is contained in
the ideal M generated by p and γn(p−1tp−1) with n > i. It suffices to take
x = yq′r−(p−1)iγi( t

p−1

p ) with y ∈W (R) the solution of the equation

ϕy − q′r−(p−1)iy = b.

Proof of (3): Suppose x ∈ Filr Acris, then by Proposition 6.23, one can
write

pmm!x = y + z, y ∈W (R), z ∈ I [r].

Since y ∈ I [r], one sees that y ∈ FilrW (R) = q′rW (R) ⊆ N . The assertion
follows since we also have z ∈ I [r] ⊆ N . ut
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Theorem 6.25. (1) Suppose

B′cris = {x ∈ Bcris | ϕn(x) ∈ Fil0Bcris for all n ∈ N}.

Then ϕ(B′cris) ⊆ B
+
cris ⊆ B′cris if p 6= 2 and ϕ2(B′cris) ⊆ B

+
cris ⊆ B′cris if p = 2.

(2) For every r ∈ N, the sequence

0 −→ Qp(r) −→ Filr B+
cris

p−rϕ−1−−−−−→ B+
cris −→ 0

is exact.
(3) For every r ∈ Z, the sequence

0 −→ Qp(r) −→ Filr Bcris
p−rϕ−1−−−−−→ Bcris −→ 0

is exact.

Proof. For (1), B+
cris ⊆ B′cris is trivial. Conversely, suppose x ∈ B′cris. There

exist r, j ∈ N and y ∈ Acris such that x = t−rp−jy. If n ∈ N, $n(x) =
p−nr−jt−rϕn(y), then ϕn(y) ∈ Filr Acris for all n, and thus y ∈ I [r]. One can
write y =

∑
m≥0

amt
{m+r} with am ∈ W (R) converging to 0 p-adically. One

thus has

x = p−j
∑
m≥0

amt
{m+r}−r and ϕx = p−j−r

∑
m≥0

ϕ(am)pm+rt{m+r}−r.

By a simple calculation, ϕx = p−j−r
∑
m≥0

cmϕ(am)tm, where cm is a rational

number satisfying

v(cm) ≥ (m+ r)(1− 1
p− 1

− 1
(p− 1)2

).

If p 6= 2, it is an integer and ϕ(x) ∈ p−j−rW (R)[[t]] ⊆ p−j−rAcris ⊆ B+
cris. For

p = 2, the proof is analogous.
The assertion (2) follows directly from Proposition 6.24.
For the proof of (3), by (2), for every integer i such that r+ i ≥ 0, one has

an exact sequence

0 −→ Qp(r + i) −→ Filr+iB+
cris −→ B+

cris −→ 0,

which, Tensoring by Qp(−i), results the following exact sequence

0 −→ Qp(r) −→ t−i Filr+iB+
cris −→ t−iB+

cris −→ 0.

The result follows by passing the above exact sequence to the limit. ut
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Let
Be = Bϕ=1

cris = {b ∈ Bcris, ϕb = b},

which is a sub-ring of Bcris containing Qp. Recall U is the image of U+
R under

the logarithm map. Then U(−1) = {ut | u ∈ U}. Since ϕ(v) = v for v ∈ U(−1),
U(1) ⊂ Fil−1Be.

Theorem 6.26. (1) Fil0Be = Qp, and for every i > 0, FiliBe = 0.
(2) One has U(−1) = Fil−1Be.
(3) Suppose v is an element of U(−1) not contained in Qp, then for any

integer r ≥ 1,

Fil−r Be = {b = b0 + b1v + · · ·+ br−1v
r−1 | b0, · · · br−1 ∈ U(−1)}

and thus Be is the Qp-algebra generated by U(−1).
(4) For r ≥ 0, the sequence

0 −→ Qp−→Fil−r Be −→ Fil−r BdR/B
+
dR −→ 0 (6.15)

is exact.
(5) The sequence

0 −→ Qp −→ Be −→ BdR/B
+
dR −→ 0 (6.16)

is exact.

Proof. Fil0Be = Qp is a special case of Theorem 6.25 (3). Thus FiliBe ⊂
Qp ∩ FiliBdR = 0 for i > 0. (1) is proved.

By (1), one also see for r > 0, the sequence

0 −→ Qp−→Fil−r Be −→ Fil−r BdR/B
+
dR

is exact. Along with the exact sequence

0 −→ Qp(1) −→ U −→ C −→ 0,

we have a commutative diagram

0 −−−−→ Qp −−−−→ U(−1) −−−−→ C(−1) −−−−→ 0

Id

y incl

y Id

y
0 −−−−→ Qp −−−−→ Fil−1Be −−−−→ Fil−1BdR/B

+
dR

whose rows are exact. We thus get (2) and the case r = 1 of (4).
Suppose r ≥ 2 and let Xr be the set of elements of the form

∑r−1
i=0 biv

i

with bi ∈ U(−1). It is a sub Qp-vector space of Fil−r Be. Write v =
v0/t and bi = b′i/t, then v0, bi ∈ U and θ(v0) 6= 0. Thus br−1v

r−1 =
b′r−1v

r−1
0 /tr and θ(b′r−1v

r−1
0 ) = θ(b′r−1)θ(v0)

r−1. Thus the projection of Xr to
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Fil−r BdR/Fil−r+1BdR
∼= C(−r) is surjective. By induction, the projection

of Xr to Fil−r BdR/B
+
dR is also surjective. We have a commutative diagram

0 −−−−→ Qp −−−−→ Xr −−−−→ Fil−r BdR/B
+
dR −−−−→ 0

Id

y incl

y Id

y
0 −−−−→ Qp −−−−→ Fil−1Be −−−−→ Fil−r BdR/B

+
dR

whose rows are exact. We thus get (3) and the rest of (4).
(5) follows by passage to the limit. ut

Remark 6.27. (1) The exact sequence (6.16) is the so-called fundamental exact
sequence, which means that

(a) Qp = Be ∩B+
dR,

(b) BdR = Be +B+
dR (not a direct sum).

One can also use Theorem 6.25 (3) directly to deduce the exact sequence

0 −→ Be−→Bcris
ϕ−1−−−→ Bcris −→ 0

and prove (5).
(2) For any integer r ≥ 1, Fil0Bϕ

r=1
cris = Qpr , the unique unramified exten-

sion of Qp of degree r. This could be shown by using analogue method as the
one to prove Proposition 6.24 (1).

6.3 Semi-stable p-adic Galois representations

Proposition 6.28. The rings Bcris and Bst are (Qp, GK)-regular, which means
that

(1) Bcris and Bst are domains,
(2) BGK

cris = BGK
st = CGK

st = K0,
(3) If b ∈ Bcris (resp. Bst), b 6= 0, such that Qp ·b is stable under GK , then

b is invertible in Bcris (resp. Bst).

Proof. (1) is immediate, since Bcris ⊂ Bst ⊂ BdR. (2) is just Theorem 6.14
(1).

For (3), since k̄ is the residue field of R, W (R) contains W (k̄) and W (R)[ 1p ]
contains P0 := W (k̄)[ 1p ]. Then Bcris contains P0. Let P be the algebraic closure
of P0 in C, then BdR is a P -algebra.

If b ∈ BdR, b 6= 0, such that Qpb is stable under GK , by multiplying t−i for
some i ∈ Z, we may assume b ∈ B+

dR but b /∈ Fil1BdR. Suppose g(b) = η(g)b.
Let b̄ = θ(b) be the image of b ∈ C. Then Qpb̄ ∼= Qp(η) is a one-dimensional
Qp-subspace of C stable under GK , by Sen’s theory (Corollary 3.57), this
implies that η(IK) is finite and b̄ ∈ P ⊂ B+

dR. Then b′ = b − b̄ ∈ FiliBdR −
Fili+1BdR for some i ≥ 1. Note that Qpb

′ is also stable by GK whose action is
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defined by the same η. Then the GK-action on Qpθ(t−ib′) is defined by χ−iη
where χ is the cyclotomic character. In this case χ−iη(IK) is not finite and it
is only possible that b′ = 0 and hence b = b̄ ∈ P .

Now if b ∈ Bst, then b ∈ P ∩ Bst. We claim that P ∩ Bst = P0 ⊂ Bcris.
Indeed, suppose P ∩ Bst = Q ⊃ P0. Then Frac(Q) contains a nontrivial
finite extension L of P0. Note that L0 = P0 and by (2), BGL

st = P0, but
Frac(Q)GL = L, contradiction! ut

For any p-adic representation V , we denote

Dst(V ) = (Bst ⊗Qp
V )GK , Dcris(V ) = (Bcris ⊗Qp

V )GK .

Note that Dst(V ) and Dcris(V ) are K0-vector spaces and the maps

αst(V ) : Bst ⊗K0 Dst(V )→ Bst ⊗Qp
V

αcris(V ) : Bcris ⊗K0 Dcris(V )→ Bcris ⊗Qp
V

are always injective.

Definition 6.29. A p-adic representation V of GK is called semi-stable if it
is Bst-admissible, i.e., the map αst(V ) is an isomorphism.

A p-adic representation V of GK is called crystalline if it is Bcris-
admissible, i.e., the map αcris(V ) is an isomorphism.

Clearly, for any p-adic representation V , Dcris(V ) is a subspace of Dst(V )
and

dimK0 Dcris(V ) ≤ dimK0 Dst(V ) ≤ dimQp
V.

Therefore we have

Proposition 6.30. (1) A p-adic representation V is semi-stable (resp. crys-
talline) if and only if dimK0 Dst(V ) = dimQp V (resp. dimK0 Dcris(V ) =
dimQp V ).

(2) A crystalline representation is always semi-stable.

Let V be any p-adic representation of GK , since K ⊗K0 Bst → BdR is
injective if [K : K0] <∞ (Theorem 6.14), we see that

K ⊗K0 Dst(V ) = K ⊗K0 (Bst ⊗Qp V )GK

= (K ⊗K0 (Bst ⊗Qp
V ))GK

= ((K ⊗K0 Bst)⊗Qp
V )GK

↪→ (BdR ⊗Qp V )GK = DdR(V ).

Thus K ⊗K0 Dst(V ) ⊂ DdR(V ) as K-vector spaces.
Assume that V is semi-stable, then dimK0 Dcris(V ) = dimQp

V , thus

dimK K ⊗K0 Dcris(V ) = dimQp
V ≥ dimDdRV,

which implies that
dimDdRV = dimQp

V,

i.e., V is de Rham. Thus we have proved that
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Proposition 6.31. If V is a semi-stable p-adic representation of GK , then it
is de Rham. Moreover,

DdR(V ) = K ⊗K0 Dst(V ).

Let V be any p-adic representation of GK . On Dst(V ) there are a lot of
structures because of the maps ϕ and N on Bst. We define two corresponding
maps ϕ and N on Bst ⊗Qp V by

ϕ(b⊗ v) = ϕb⊗ v
N(b⊗ v) = Nb⊗ v

for b ∈ Bst, v ∈ V . The maps ϕ and N commute with the action of GK
and satisfy Nϕ = pϕN . Now one can easily see that the K0-vector space
D = Dst(V ) is stable under ϕ and N , dimK0 D <∞ and ϕ is bijective on D
(One can check that ϕ is injective on Bst). Moreover, the K-vector space

DK = K ⊗K0 Dst(V ) ⊂ DdR(V )

is equipped with the structure of a filtered K-vector space with the induced
filtration

FiliDK = DK

⋂
FiliDdR(V ).

In next section, we shall see Dst(V ) is a filtered (ϕ,N)-module D over K
such that dimK0 D <∞ and ϕ is bijective on D.

Remark 6.32. By definition, a crystalline representation is a p-adic represen-
tation of GK which is Bcris-admissible. Note that Bcris = {b ∈ Bst | Nb = 0}.
Thus a p-adic representation V of GK is crystalline if and only if V is semi-
stable and N = 0 on Dst(V ).

6.4 Filtered (ϕ,N)-modules

6.4.1 Definitions.

Definition 6.33. A (ϕ,N)-module over k (or equivalently, over K0) is a K0-
vector space D equipped with two maps

ϕ,N : D −→ D

with the following properties:
(1) ϕ is semi-linear with respect to the absolute Frobenius σ on K0.
(2) N is a K0-linear map.
(3) Nϕ = pϕN .

A morphism η : D1 → D2 between two (ϕ,N)-modules, is a K0-linear map
commuting with ϕ and N .



186 6 Semi-stable p-adic representations

Remark 6.34. The map ϕ : D → D is additive, and

ϕ(λd) = σ(λ)ϕ(d), for every λ ∈ K0, d ∈ D.

To give ϕ is equivalent to giving a K0-linear map

Φ : K0 σ⊗K0 D → D,

by Φ(λ⊗ d) = λϕ(d).

Remark 6.35. The category of (ϕ,N)-modules is an abelian category. It is the
category of left-modules over the non-commutative ring generated by K0 and
two elements ϕ and N with relations

ϕλ = σ(λ)ϕ, Nλ = λN, for all λ ∈ K0

and
Nϕ = pϕN.

Moreover,

(1) There is a tensor product in this category given by

• D1 ⊗D2 = D1 ⊗K0 D2 as K0-vector space,
• ϕ(d1 ⊗ d2) = ϕd1 ⊗ ϕd2,

• N(d1 ⊗ d2) = Nd1 ⊗ d2 + d1 ⊗Nd2.

(2) K0 has a structure of (ϕ,N)-module by ϕ = σ and N = 0. Moreover

K0 ⊗D = D ⊗K0 = D,

thus it is the unit object in the category.
(3) The full sub-category of the category of (ϕ,N)-modules over k such

that

dimK0 D <∞ and ϕ is bijective

is an abelian category and is stable under tensor product.
If D is an object of this sub-category, we may define the dual object D∗ =

L (D,K0) of D, the set of linear maps η : D → K0 such that

• ϕ(η) = σ ◦ η ◦ ϕ−1,

• N(η)(d) = −η(Nd), for all d ∈ D.

Definition 6.36. A filtered (ϕ,N)-module over K consists of a (ϕ,N)-
module D over K0 and a filtration on the K-vector space DK = K0 ⊗K0 D
which is decreasing, separated and exhaustive, i.e., such that FiliDK(i ∈ Z),
the sub K-vector spaces of DK satisfy
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• Fili+1DK ⊂ FiliDK ,

•
⋂
i∈Z

FiliDK = 0,
⋃
i∈Z

FiliDK = DK .

A morphism η : D1 → D2 of filtered (ϕ,N)-modules is a morphism of (ϕ,N)-
modules such that the induced K-linear map ηK : K ⊗K0 D1 → K ⊗K0 D2

satisfies
ηK(FiliD1K) ⊂ FiliD2K , for all i ∈ Z.

The set of filtered (ϕ,N)-modules over K makes a category. We denote it
by MFK (ϕ,N).

Remark 6.37. The category MFK (ϕ,N) is an additive category (but not
abelian). Moreover,

(1) There is an tensor product:

D1 ⊗D2 = D1 ⊗K0 D2

with ϕ,N as in Remark 6.35, and the filtration on

(D1⊗D2)K = K⊗K0 (D1⊗K0D2) = (K⊗K0D1)⊗(K⊗K0D2) = D1K⊗KD2K

defined by

Fili(D1K ⊗K D2K) =
∑

i1+i2=i

Fili1 D1K ⊗K Fili2 D2K .

(2) K0 can be viewed as a filtered (ϕ,N)-module with ϕ = σ and N = 0,
and

FiliK =

{
K, i 6 0;
0, i > 0.

Then for any filtered (ϕ,N)-module D, K0 ⊗D ' D ⊗K0 ' D. Thus K0 is
the unit element in the category.

(3) If dimK0 D < ∞ and if ϕ is bijective on D, we may define the dual
object D∗ of D by

(D∗)K = K ⊗K0 D
∗ = (DK)∗ ' L (DK ,K),

Fili(D∗)K = (Fil−i+1DK)∗.

6.4.2 tN(D) and tH(D).

Assume D is a (ϕ,N)-module over k such that dimK0 D <∞ and ϕ is bijec-
tive. We associate an integer tN (D) to D here.

(1) Assume first that dimK0 D = 1. Then D = K0d with ϕd = λd, for
d 6= 0 ∈ D and λ ∈ K0. ϕ is bijective implies that λ 6= 0.
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Assume d′ = ad, a ∈ K0, a 6= 0, such that ϕd′ = λ′d′. One can compute
easily that

ϕd′ = σ(a)λd =
σ(a)
a

λd′,

which implies

λ′ = λ
σ(a)
a

.

As σ : K0 → K0 is an automorphism, vp(λ) = vp(λ′) ∈ Z is independent of
the choice of the basis of D. We define

Definition 6.38. If D is a (ϕ,N)-module over k of dimension 1 such that ϕ
is bijective, then set

tN (D) := vp(λ) (6.17)

where λ ∈ GL1(K0) = K∗0 is the matrix of ϕ under some basis.

Remark 6.39. The letter N in the expression tN (D) stands for the word New-
ton, not for the monodromy map N : D → D.

(2) Assume dimK0 D = h is arbitrary. The h-th exterior product∧h

K0
D ⊂ D ⊗K0 D ⊗K0 · · · ⊗K0 D(h times)

is a one-dimensional K0-vector space. Moreover, ϕ is injective(resp. surjective,
bijective) on D implies that it is also injective(resp. surjective, bijective) on∧h
K0
D.

Definition 6.40. If D is a (ϕ,N)-module over k of dimension h such that ϕ
is bijective, then set

tN (D) := tN (
∧h

K0
D). (6.18)

Choose a basis {e1, · · · , eh} of D over K0, such that ϕ(ei) =
∑h
j=1 aijej .

Write A = (aij)16i,j6h. Given another basis {e′1, · · · , e′h} with the transfor-
mation matrix P , write A′ the matrix of ϕ, then A = σ(P )A′P−1. Moreover
ϕ is injective if and only if detA 6= 0, and

Proposition 6.41.
tN (D) = vp(detA). (6.19)

Proposition 6.42. One has
(1) If 0→ D′ → D → D′′ → 0 is a short exact sequence of (ϕ,N)-modules,

then tN (D) = tN (D′) + tN (D′′).
(2) tN (D1 ⊗D2) = dimK0(D2)tN (D1) + dimK0(D1)tN (D2).
(3) tN (D∗) = −tN (D).
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Proof. (1) Choose a K0-basis {e1, · · · , eh′} of D′ and extend it to a basis
{e1, · · · , eh} of D, then {ēh′+1, · · · , ēh} is a basis of D′′. Under these bases,
suppose the matrix of ϕ over D′ is A, over D′′ is B, then over D the matrix
of ϕ is (A ∗0 B ). Thus

tN (D) = vp(det(A) · det(B)) = tN (D′) + tN (D′′).

(2) If the matrix of ϕ over D1 to a certain basis {ei} is A, and over
D2 to a certain basis {fj} is B, then {ei ⊗ fj} is a basis of D1 ⊗ D2 and
under this basis, the matrix of ϕ is A ⊗ B = (ai1,i2B). Thus det(A ⊗ B) =
det(A)dimD2 det(B)dimD1 and

tN (D1 ⊗D2) = vp(det(A⊗B)) = dimK0(D2)tN (D1) + dimK0(D1)tN (D2).

(3) If the matrix of ϕ over D to a certain basis {ei} is A, then under
the dual basis {e∗i } of D∗, the matrix of ϕ is σ(A−1), hence tN (D∗) =
vp(detσ(A−1)) = −vp(detA) = −tN (D). ut

Proposition 6.43. If D is a (ϕ,N)-module such that dimK0 D < ∞ and ϕ
is bijective, then N is nilpotent.

Proof. IfN is not nilpotent, let h be an integer such thatNh(D) = Nh+1(D) =
· · · = Nm(D) for all m ≥ h. Then D′ = Nh(D) 6= 0 is invariant by N , and by
ϕ since Nmϕ = pmϕNm for every integer m > 0. Thus D′ is a (ϕ,N)-module
such that N and ϕ are both surjective.

Pick a basis of D′ and suppose under this basis, the matrices of ϕ and
N are A and B respectively. By Nϕ = pϕN we have BA = pAσ(B). Thus
vp(det(B)) = 1 + vp(det(σ(B))) = 1 + vp(det(B)), this is impossible. ut

Now let FilK be the category of finite-dimensional filteredK-vector spaces.

Definition 6.44. Suppose ∆ ∈ FilK is a finite dimensional filtered K-vector
space.

(1) If dimK ∆ = 1, define

tH(∆) := max{i ∈ Z : Fili∆ = ∆}. (6.20)

Thus it is the integer i such that Fili∆ = ∆ and Fili+1∆ = 0.
(2) If dimK ∆ = h, define

tH(∆) := tH(
∧h

K
∆), (6.21)

where
∧h
K ∆ ⊂ ∆⊗K0 ∆⊗K0 · · ·∆ (h times) is the h-th exterior algebra of ∆

with the induced filtration.
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There is always a basis {e1, · · · , eh} of ∆ over K which is adapted to the
filtration, i.e., there exists i1, · · · , ih ∈ Z such that for any integer i,

Fili(∆) =
⊕
ij>i

Keij .

Then

tH(∆) =
h∑
j=1

ij .

Proposition 6.45. One has

tH(∆) =
∑
i∈Z

i · dimK gri∆ (6.22)

with gri∆ = Fili∆/Fili+1∆ by definition.

Proposition 6.46. (1) If 0 → ∆′ → ∆ → ∆′′ → 0 is a short exact sequence
of filtered K-vector spaces, then

tN (∆) = tN (∆′) + tN (∆′′).

(2) tH(∆1 ⊗∆2) = dimK(∆2)tH(∆1) + dimK(∆1)tH(∆2).
(3) tH(∆∗) = −tH(∆).

Proof. (3) follows from definition. By Proposition 6.45, tH is compatible with
the filtration, thus (1) follows.

To prove (2), let {e1, · · · , eh} and {f1, · · · , fl} be bases of ∆1 and ∆2

respectively, compatible with the filtration. Then {ei ⊗ fj | 1 ≤ i ≤ h, 1 ≤
j ≤ l} is a basis of ∆1 ⊗∆2, compatible with the filtration. Then (2) follows
from an easy computation. ut

Remark 6.47. We have a similar formula for tN (D) like (6.22). Let D be a
(ϕ,N)-module such that dimK0 D < ∞ and ϕ is bijective on D. In this case
D is called a ϕ-isocrystal over K. Then

D =
⊕
α∈Q

Dα,

where Dα is the part of slope α. If k is algebraically closed and if α = r
s with

r, s ∈ Z, s > 1, then Dα is the sub K0-vector space generated by the d ∈ D’s
such that ϕsd = prd. The sum is actually a finite sum. Then

tN (D) =
∑
α∈Q

α dimK0 Dα. (6.23)

It is easy to check that α dimK0 Dα ∈ Z.
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6.4.3 Admissible filtered (ϕ,N)-modules.

Let D be a filtered (ϕ,N)-module D over K, we set

tH(D) = tH(DK). (6.24)

Recall a sub-object D′ of D is a sub K0-vector space stable under (ϕ,N), and
with filtration given by FiliD′K = FiliDK ∩D′K .

Definition 6.48. A filtered (ϕ,N)-module D over K is called admissible if
dimK0 D <∞, ϕ is bijective on D and

(1) tH(D) = tN (D),
(2) For any sub-object D′, tH(D′) ≤ tN (D′).

Remark 6.49. The additivity of tN and tH

tN (D) = tN (D′) + tN (D′′), tH(D) = tH(D′) + tH(D′′)

implies that admissibility is equivalent to that
(1) tH(D) = tN (D),
(2) tH(D′′) ≥ tN (D′′), for any quotient D′′.

Denote by MFadK (ϕ,N) the full sub-category of MFK(ϕ,N) consisting of
admissible filtered (ϕ,N)-modules.

Proposition 6.50. The category MFadK (ϕ,N) is abelian. More precisely, if
D1 and D2 are two objects of this category and η : D1 → D2 is a morphism,
then

(1) The kernel Ker η = {x ∈ D1 | η(x) = 0} with the obvious (ϕ,N)-
module structure over K0 and with the filtration given by Fili Ker ηK =
Ker ηK

⋂
FiliD1K for ηK : D1K → D2K and Ker ηK = K ⊗K0 Ker η, is

an admissible filtered (ϕ,N)-module.
(2) The cokernel Coker η = D2/η(D1) with the induced (ϕ,N)-module

structure over K0 and with the filtration given by Fili Coker ηK = Im(FiliD2K)
for Coker ηK = K ⊗K0 Coker η, is an admissible filtered (ϕ,N)-module.

(3) Im(η) ∼→ CoIm(η).

Proof. We first prove (3). Since Im(η) and CoIm(η) are isomorphic in the
abelian category of (ϕ,N)-modules, and since ηK is strictly compatible with
the filtrations, Im(η) ∼→ CoIm(η) in MFadK (ϕ,N).

To show (1), it suffices to show that tH(Ker η) = tD(Ker η). We have
tH(Ker η) ≤ tD(Ker η) as Ker η is a sub-object of D1, we also have tH(Im η) ≤
tD(Im η) as Im η ∼= CoIm η is a sub-object of D2, by the exact sequence of
filtered (ϕ,N)-modules

0 −→ Ker η −→ D1 −→ Im η −→ 0,

we have
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tH(D1) = tH(Ker η) + tH(Im η) ≤ tD(Ker η) + tD(Im η) = tD(D1).

As tH(D1) = tD(D1), we must have

tH(Ker η) = tD(Ker η), tH(Im η) = tD(Im η)

and Ker η is admissible.
The proof of (2) is similar to (1) and we omit it here. ut

Remark 6.51. If D is an object of the category MFadK (ϕ,N), then a sub-object
D′ is something isomorphic to Ker (η : D → D2) for another admissible filtered
(ϕ,N)-module D2. Therefore a sub-object is a sub K0-vector space D′ which
is stable under (ϕ,N) and satisfies tH(D′) = tN (D′).

The category MFadK (ϕ,N) is Artinian: an object of this category is simple
if and only if it is not 0 and if D′ is a sub K0-vector space of D stable under
(ϕ,N) and such that D′ 6= 0, D′ 6= D, then tH(D′) < tN (D′).

6.5 Statement of Theorem A and Theorem B

6.5.1 de Rham implies potentially semi-stable.

Let B be a Qp-algebra on which GK acts. Let K ′ be a finite extension of K
contained in K. Assume the condition

(H) B is (Qp, GK′)-regular for any K ′

holds.

Definition 6.52. Let V be a p-adic representation of GK . V is called poten-
tially B-admissible if there exists a finite extension K ′ of K contained in K
such that V is B-admissible as a representation of GK′ , i.e.

B ⊗BG
K′ (B ⊗Qp

V )GK′ −→ B ⊗Qp
V

is an isomorphism, or equivalently,

dimBG
K′ (B ⊗Qp V )GK′ = dimQp V.

It is easy to check that if K ⊂ K ′ ⊂ K ′′ is a tower of finite extensions of
K contained in K, then the map

BGK′ ⊗BG
K′′ (B ⊗Qp

V )GK′′ −→ (B ⊗Qp
V )GK′

is always injective. Therefore, if V is admissible as a representation of GK′ ,
then it is also admissible as a representation of GK′′ .

Remark 6.53. The condition (H) is satisfied by B = K, C, BHT, BdR, Bst.
The reason is that K is also an algebraic closure of any finite extension K ′ of
K contained in K, and consequently the associated K, C, BHT, BdR, Bst for
K ′ are the same for K.
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For B = K, C, BHT and BdR, then B is a K-algebra. Moreover, BGK′ =
K ′. In this case, assume V is a p-adic representation of GK which is potentially
B-admissible. Then there exists K ′, a finite Galois extension of K contained
in K, such that V is B-admissible as a GK′ -representation.

Let J = Gal(K ′/K), h = dimQp(V ), then

∆ = (B ⊗Qp V )GK′

is a K ′-vector space, and dimK′ ∆ = h. Moreover, J acts semi-linearly on ∆,
and

(B ⊗Qp
V )GK = ∆J .

By Hilbert theorem 90, ∆ is a trivial representation, thus K ′ ⊗K ∆J → ∆ is
an isomorphism, i.e.

dimK ∆
J = dimK′ ∆J = dimQp V,

and hence V is B-admissible. We have the following proposition:

Proposition 6.54. Let B = K, C, BHT or BdR, then potentially B-admissible
is equivalent to B-admissible.

However, the analogy is not true for B = Bst.

Definition 6.55. (1) A p-adic representation of GK is K ′-semi-stable if it is
semi-stable as a GK′-representation.

(2) A p-adic representation of GK is potentially semi-stable if it is K ′-
semi-stable for a suitable K ′, or equivalently, it is potentially Bst-admissible.

Let V be a potentially semi-stable p-adic representation of GK , then V
is de Rham as a representation of GK′ for some finite extension K ′ of K.
Therefore V is de Rham as a representation of GK .

The converse is also true.

Theorem A. Any de Rham representation of GK is potentially semi-stable.

Remark 6.56. Theorem A was known as the p-adic Monodromy Conjecture.
The first proof was given by Berger ([Ber02]) in 2002. he used the theory of
(ϕ, Γ )-modules to reduce the proof to a conjecture by Crew in p-adic differ-
ential equations. Crew Conjecture has three different proofs given by André
([And02a]), Mebkhout([Meb02]), and Kedlaya([Ked04]) respectively.

Complements about Theorem A.

(1) Let K ′ be a finite Galois extension of K contained in K, J = Gal(K ′/K).
Assume V is a p-adic representation of GK which is K ′-semi-stable. Then
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Dst,K′(V ) = (Bst ⊗Qp
V )GK′

is an admissible filtered (ϕ,N)-module over K ′.
Write K ′0 = Frac(W (k′)), where k′ is the residue field of K ′. Then BGK′

st =
K ′0. J acts on D′ = Dst,K′(V ) semi-linearly with respect to the action of J
on K ′0, and this action commutes with those of ϕ and N . In this way, D′ is a
(ϕ,N, J)-module. The action of J is also semi-linear with respect to the action
of J onK ′0: for I(K ′/K) the inertia subgroup of J , Gal(K ′0/K0) = J/I(K ′/K),
if τ ∈ J , λ ∈ K ′0 and δ ∈ D′, then τ(λδ) = τ(λ)τ(δ).

Let DdR,K′(V ) = (BdR ⊗Qp
V )GK′ . As an exercise, one can check that

DdR,K′(V ) = K ′ ⊗K′
0
D′,

and hence
DdR(V ) = (K ′ ⊗K′

0
D′)J .

The group J = GK/GK′ acts naturally on (BdR⊗Qp
V )GK′ , and on K ′⊗K′

0
D′,

the J-action is by τ(λ⊗ d′) = τ(λ)⊗ τ(d′) for λ ∈ K ′ and d′ ∈ D′. These two
actions are equivalent.

Definition 6.57. A filtered (ϕ,N,Gal(K ′/K))-module over K is a finite di-
mensional K ′0-vector space D′ equipped with actions of (ϕ,N,Gal(K ′/K)) and
a structure of filtered K-vector space on (K ′ ⊗K′

0
D′)Gal(K′/K).

We get an equivalence of categories between K ′-semi-stable p-adic repre-
sentations of GK and the category of admissible filtered (ϕ,N,Gal(K ′/K))-
modules over K.

By passage to the limit over K ′ and using Theorem A, we get

Proposition 6.58. There is an equivalence of categories between de Rham
representations of GK and admissible filtered (ϕ,N,GK)-modules over K.

(2) We have analogy results with `-adic representations, cf. Chapter 1. Recall
that if ` 6= p, an `-adic representation V of GK is potentially semi-stable if
there exists an open subgroup of the inertia subgroup which acts unipotently.

(3) Assume V is a de Rham representation of GK of dimension h, and let
∆ = DdR(V ). Then there exists a natural isomorphism

BdR ⊗K ∆ ∼= BdR ⊗Qp V.

Let {v1, · · · , vh} be a basis of V over Qp, and {δ1, · · · , δh} a basis of ∆ over
K. We identify vi with 1 ⊗ vi, and δi with 1 ⊗ δi, for i = 1, · · · , h. Then
{v1, · · · , vh} and {δ1, · · · , δh} are both bases of BdR⊗K ∆ ∼= BdR⊗Qp V over
BdR. Thus

δj =
h∑
i=1

bijvi with (bij) ∈ GLh(BdR).

Since the natural map K ′⊗K′
0
Bst → BdR is injective, Theorem A is equivalent

to the claim that there exists a finite extension K ′ of K contained in K such
that (bij) ∈ GLh(K ′ ⊗K′

0
Bst).
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6.5.2 Weakly admissible implies admissible.

Let V be any p-adic representation of GK and consider Dst(V ) = (Bst ⊗Qp

V )GK . We know that Dst(V ) is a filtered (ϕ,N)-module over K such that
dimK0 Dst(V ) <∞ and ϕ is bijective on Dst(V ), and

Dst : RepQp
(GK) −→MFK(ϕ,N)

is a covariant additive Qp-linear functor.
On the other hand, let D be a filtered (ϕ,N)-module over K. We can

consider the filtered (ϕ,N)-module Bst ⊗ D, with the tensor product in the
category of filtered (ϕ,N)-modules. Then

Bst ⊗D = Bst ⊗K0 D,

ϕ(b⊗ d) = ϕb⊗ ϕd,
N(b⊗ d) = Nb⊗ d+ b⊗Nd.

Since

K ⊗K0 (Bst ⊗D) = (K ⊗K0 (Bst)⊗K DK) ⊂ BdR ⊗K DK ,

K ⊗K0 (Bst ⊗ D) is equipped with the induced filtration from BdR ⊗K DK .
The group GK acts on Bst ⊗D by

g(b⊗ d) = g(b)⊗ d,

which commutes with ϕ and N and is compatible with the filtration.

Definition 6.59.

Vst(D) = {v ∈ Bst ⊗D | ϕv = v,Nv = 0, 1⊗ v ∈ Fil0(K ⊗K0 (Bst ⊗D))}.

Vst(D) is a sub Qp-vector space of Bst ⊗D, stable under GK .

Theorem B. (1) If V is a semi-stable p-adic representation of GK , then
Dst(V ) is an admissible filtered (ϕ,N)-module over K.

(2) If D is an admissible filtered (ϕ,N)-module over K, then Vst(D) is a
semi-stable p-adic representation of GK .

(3) The functor Dst : Repst
Qp

(GK) −→ MFadK (ϕ,N) is an equivalence of
categories and Vst : MFadK (ϕ,N) −→ Repst

Qp
(GK) is a quasi-inverse of Dst.

Moreover, they are compatible with tensor product, dual, etc.

Complements about Theorem B.

(1) Repst
Qp

(GK) is a sub-Tannakian category of RepQp
(GK).

(2) (Exercise) It’s easy to check that

• Dst(V1 ⊗ V2) = Dst(V1)⊗Dst(V2);
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• Dst(V ∗) = Dst(V )∗;
• Dst(Qp) = K0.

Therefore by Theorem B, MFadK (ϕ,N) is stable under tensor product and
dual.

Remark 6.60. (1) One can prove directly (without using Theorem B) that if
D1, D2 are admissible filtered (ϕ,N)-modules, then D1⊗D2 is again admissi-
ble. But the proof is far from trivial. The first proof is given by Faltings [Fal94]
for the case N = 0 on D1 and D2. Later on, Totaro [Tot96] proved the general
case.

(2) It is easy to check directly that if D is an admissible filtered (ϕ,N)-
module, then D∗ is also admissible.

The proof of Theorem B splits into two parts: Proposition B1 and Propo-
sition B2.

Proposition B1. If V is a semi-stable p-adic representation of GK , then
Dst(V ) is admissible and there is a natural (functorial in a natural way)
isomorphism

V
∼−→ Vst(Dst(V )).

Exercise 6.61. If Proposition B1 holds, then

Dst : Repst
Qp

(GK) −→MFadK (ϕ,N)

is an exact and fully faithful functor. It induces an equivalence

Dst : Repst
Qp

(GK) −→MF?
K(ϕ,N)

where MF?
K(ϕ,N) is the essential image of Dst, i.e, for D a filtered (ϕ,N)-

module inside it, there exists a semi-stable p-adic representation V such that
D ' Dst(V ). And

Vst : MF?
K(ϕ,N) −→ Repst

Qp
(GK)

is a quasi-inverse functor.

Proposition B2. For any object D of MFadK (ϕ,N), there exists an object V
of Repst

Qp
(GK) such that Dst(V ) ' D.

Remark 6.62. The first proof of Proposition B2 is given by Colmez and
Fontaine ([CF00]) in 2000. It was known as the weakly admissible implies
admissible conjecture. In the old terminology, weakly admissible means ad-
missible in this book, and admissible means ? as in Exercise 6.61.

In next chapter we will give parallel proofs of Theorem A and Theorem
B relying of the fundamental lemma in p-adic Hodge theory by Colmez and
Fontaine.
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Proof of Theorem A and Theorem B

This chapter is devoted to the proofs of Theorem A and Theorem B.

Theorem A. Any de Rham representation of GK is potentially semi-stable.

Theorem B. (1) If V is a semi-stable p-adic representation of GK , then
Dst(V ) is an admissible filtered (ϕ,N)-module over K.

(2) If D is an admissible filtered (ϕ,N)-module over K, then Vst(D) is a
semi-stable p-adic representation of GK .

(3) The functor Dst : Repst
Qp

(GK) −→ MFadK (ϕ,N) is an equivalence of
categories and Vst : MFadK (ϕ,N) −→ Repst

Qp
(GK) is a quasi-inverse. More-

over, they are compatible with tensor product, dual, etc.

7.1 Admissible filtered (ϕ,N)-modules of dimension 1
and 2

7.1.1 Hodge and Newton polygons.

We give an alternative description of the condition of admissibility.
Let D be a filtered (ϕ,N)-module over K. We have defined tN (D) which

depends only on the map ϕ on D and tH(D) which depends only on the
filtration on DK .

To D we can associate two convex polygons: the Newton polygon PN (D)
and the Hodge polygon PH(D) whose origins are both (0, 0) in the usual
cartesian plane.

We know D =
⊕
α∈Q

Dα, where Dα is the part of D of slope α ∈ Q. Suppose

α1 < α2 < · · ·αm are all α’s such that Dα 6= 0. Write vj = dimDαj
.

Definition 7.1. The Newton polygon PN (D) is the polygon with break points
(0, 0) and (v1 + · · ·+ vj , α1v1 + · · ·+αjvj) for 1 ≤ j ≤ m. Thus the end point
of PN (D) is just (h, tN (D)).
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Fig. 7.1. The Newton Polygon PN (D)

The Hodge polygon PH(D) is defined similarly. Let i1 < · · · < im be those
i’s satisfying FiliDK/Fili+1DK 6= 0. Let hj = dimK(Filij DK/Filij+1DK).

Definition 7.2. The Hodge polygon PH(D) is the polygon with break points
(0, 0) and (h1 + · · ·+ hj , i1h1 + · · ·+ ijhj) for 1 ≤ j ≤ m. Thus the end point
of PH(D) is just (h, tH(D)).

-
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Fig. 7.2. The Hodge Polygon PH(D)

We can now rephrase the definition of admissibility in terms of the Newton
and Hodge polygons:
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Proposition 7.3. Let D be a filtered (ϕ,N)-module over K such that dimK0 D
is finite and ϕ is bijective on D. Then D is admissible if and only if the fol-
lowing two conditions are satisfied

(1) For any subobjects D′, PH(D′) ≤ PN (D′).
(2) PH(D) and PN (D) end up at the same point, i.e., tN (D) = tH(D).

Remark 7.4. Note that α dimK0 Dα ∈ Z. Therefore the break points of PH(D)
and PN (D) have integer coordinates.

7.1.2 The case when the filtration is trivial.

Let ∆ be a filtered K-vector space. We say that the filtration on ∆ is trivial
if

Fil0∆ = ∆ and Fil1∆ = 0.

We claim that given a filtered (ϕ,N)-module D over K with trivial filtration,
then D is admissible if and only if D is of slope 0 and in this case N = 0.

Indeed, if the filtration on DK is trivial, then the Hodge polygon is a
straight line from (0, 0) to (h, 0).

Assume in addition that D is admissible. Then PH(D) = PN (D), in par-
ticular all slopes of D are 0. Therefore there is a lattice M of D such that
ϕ(M) = M . Since Nϕ = pϕN , we have N(Dα) ⊂ Dα−1 and N = 0.

Conversely, assume in addition that D is of slope 0. If D′ a subobject of
D, then D′ is purely of slope 0, hence tN (D′) = 0 and D is admissible.

7.1.3 Tate’s twist.

Let D be any filtered (ϕ,N)-module. For i ∈ Z, define D〈i〉 as follows:

- D〈i〉 = D as a K0-vector space,
- Filr(D〈i〉)K = Filr+iDK for r ∈ Z.

Set
N |D〈i〉 = N |D, ϕ|D〈i〉 = p−iϕ|D.

Then D〈i〉 becomes a filtered (ϕ,N)-module under the new ϕ and N . It is
easy to check that D is admissible if and only D〈i〉 is admissible.

For any p-adic representation V of GK , recall V (i) = V ⊗Qp
Qp(i), then

- V is de Rham (resp. semi-stable, crystalline) if and only if V (i) is de Rham
(resp. semi-stable crystalline).

We also have
Dst(V (i)) ∼−→ Dst(V )〈i〉. (7.1)

Indeed, for D = Dst(V ) = (Bst ⊗Qp
V )GK and D′ = Dst(V (i)) = (Bst ⊗Qp

V (i))GK , let t be a generator of Zp(1), then ti is a generator of Qp(i) and
V (i) = {v ⊗ ti | v ∈ V }. Then the isomorphism D〈i〉 → D′ is given by

d =
∑

bn ⊗ vn 7−→ d′ =
∑

bnt
−i ⊗ (vn ⊗ ti) = (t−i ⊗ ti)d

where bn ∈ Bst, vn ∈ V .
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7.1.4 Admissible filtered (ϕ,N)-modules of dimension 1.

Let D be a filtered (ϕ,N)-module with dimension 1 over K0 such that ϕ is
bijective on D. Write D = K0d. Then ϕ(d) = λd for some λ ∈ K∗0 and N
must be zero since N is nilpotent.

Since DK = D ⊗K0 K = Kd is 1-dimensional over K, there exists i ∈ Z
such that

FilrDK =

{
DK , for r ≤ i,
0, for r > i.

Note that tN (D) = vp(λ), and tH(D) = i. Therefore D is admissible if and
only if vp(λ) = i.

Conversely, given λ ∈ K∗0 , we can associate to it Dλ, an admissible filtered
(ϕ,N)-module of dimension 1 given by

Dλ = K0, ϕ = λσ, N = 0,

FilrDK =

{
DK , for r ≤ vp(λ),
0, for r > vp(λ).

Exercise 7.5. If λ, λ′ ∈ K∗0 , then Dλ
∼= Dλ′ if and only if there exists u ∈W ∗

such that λ′ = λ · σ(u)
u .

In the special case when K = Qp, then K0 = Qp, and σ = Id. Therefore
Dλ
∼= Dλ′ if and only if λ = λ′.

7.1.5 Admissible filtered (ϕ,N)-modules of dimension 2.

Let D be a filtered (ϕ,N)-module with dimK0 D = 2, and ϕ bijective. Then
there exists a unique i ∈ Z such that

FiliDK = DK , Fili+1DK 6= DK .

Replacing D with D〈i〉, we may assume that i = 0. There are two cases.

Case 1: Fil1DK = 0. This means that the filtration is trivial. We have
discussed this case in § 7.1.2.

Case 2: Fil1DK 6= 0. Therefore Fil1DK = L is a 1-dimensional sub K-vector
space of DK . Hence there exists a unique r ≥ 1 such that

Filj DK =


DK , if j ≤ 0,
L if 1 ≤ j ≤ r,
0, if j > r

.

So the Hodge polygon PH(D) is as Fig. 7.3.
Assume K = Qp. Then K0 = Qp, D = DK , σ = Id, ϕ is bilinear. Let

Pϕ(X) be the characteristic polynomial of ϕ acting on D. Then
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Fig. 7.3.

Pϕ(X) = X2 + aX + b = (X − λ1)(X − λ2)

for some a, b ∈ Qp, λ1, λ2 ∈ Qp.
We may assume vp(λ1) ≤ vp(λ2). Then PN (D) is as Fig. 7.4

-
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(2, vp(λ1) + vp(λ2))

Fig. 7.4.

Then the admissibility condition implies that

vp(λ1) ≥ 0 and vp(λ1) + vp(λ2) = r. (7.2)

We have the following two cases to consider:

Case 2A: N 6= 0. Recall that N(Dα) ⊂ Dα−1. Then

vp(λ2) = vp(λ1) + 1 6= vp(λ1).

In particular λ1, λ2 ∈ Qp. Let vp(λ1) = m. Then m ≥ 0 and r = 2m+ 1.
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Assume e2 is an eigenvector for λ2, i.e.

ϕ(e2) = λ2e2.

Let e1 = N(e2), which is not zero as N 6= 0. Applying Nϕ = pϕN to e2, one
can see that e1 is an eigenvector of the eigenvalue λ2/p of ϕ, thus λ2 = pλ1.
Therefore

D = Qpe1 ⊕Qpe2, λ1 ∈ Z∗p
with

ϕ(e1) = λ1e1, N(e1) = 0,
ϕ(e2) = pλ1e2, N(e2) = e1.

Now the remaining question is: what is L? To answer this question, we
have to check the admissibility conditions, i.e.

- tH(D) = tN (D);
- tH(D′) ≤ tN (D′) for any subobjects D′ of D.

The only non-trivial subobject is D′ = Qpe1. We have

tN (D′) = m < r, tH(D′) =

{
r, if L = D′;
0, otherwise.

The admissibility condition implies that tH(D′) = 0, i.e. L can be any line
6= D′. Therefore there exists a unique α ∈ Qp such that L = Qp(e2 + αe1).

Conversely, given λ1 ∈ Z∗p, α ∈ Qp, we can associate a 2-dimensional
filtered (ϕ,N)-module D{λ1,α} of Qp to the pair (λ1, α), where

D{λ1,α} = Qpe1 ⊕Qpe2 (7.3)

with

ϕ(e1) = λ1e1, N(e1) = 0,
ϕ(e2) = pλ1e2, N(e2) = e1.

Filj D{λ1,α} =


D{λ1,α}, if j ≤ 0,
Qp(e2 + αe1), if 1 ≤ j ≤ 2vp(λ1) + 1,
0, otherwise.

Exercise 7.6. D{λ1,α}
∼= D{λ′1,α′} if and only if λ1 = λ′1 and α = α′.

To conclude, we have

Proposition 7.7. The map

(i, λ1, α) 7−→ D{λ1,α}〈i〉

from Z×Z∗p×Qp to the set of isomorphism classes of 2-dimensional admissible
filtered (ϕ,N)-modules over Qp with N 6= 0 is bijective.



7.1 Admissible filtered modules of dimension 1 and 2 203

Remark 7.8. We claim that D{λ1,α} is irreducible if and only if vp(λ1) > 0.
Indeed, D{λ1,α} is not irreducible if and only if there exists a nontrivial

subobject of it in the category of admissible filtered (ϕ,N)-modules. We have
only one candidate: D′ = Qpe1. And D′ is admissible if and only if tH(D′) =
tN (D′). Note that the former number is 0 and the latter one is vp(λ1).

Case 2B: N = 0. By the admissibility condition, we need to check that
for all lines D′ of D stable under ϕ, tH(D′) ≤ tN (D′). By the filtration of D,
the following holds:

tH(D′) =

{
0, if D′ 6= L,

r, if D′ = L.

Again there are two cases.
(a) If the polynomial Pϕ(X) = X2 + aX + b is irreducible on Qp[X].

Then there is no non-trivial subobjects of D. Let L = Qpe1, ϕ(e1) = e2, then
ϕ(e2) = −be1−ae2 and D = Qpe1⊕Qpe2 is always admissible and irreducible,
isomorphic to Da,b in the following exercise.

Exercise 7.9. Let a, b ∈ Zp with r = vp(b) > 0 such that X2 + aX + b is
irreducible over Qp. Set

Da,b = Qpe1 ⊕Qpe2 (7.4)

with {
ϕ(e1) = e2,

ϕ(e2) = −be1 − ae2,
N = 0,

Filj Da,b =


Da,b, if j ≤ 0,
Qpe1, if 1 ≤ j ≤ r,
0, otherwise.

Then Da,b is admissible and irreducible.

(b) If the polynomial Pϕ(X) = X2 +aX+b = (x−λ1)(x−λ2) is reducible
on Qp[X], suppose vp(λ1) ≤ vp(λ2), r = vp(λ1)+ vp(λ2). Let e1 and e2 be the
eigenvectors of λ1 and λ2 respectively. Then D = Qpe1 ⊕Qpe2 and Qpe1 and
Qpe2 are the only two non-trivial subobjects of D. Check the admissibility
condition, then L is neither Qpe1 or Qpe2. By scaling e1 and e2 appropriately,
we can assume L = Qp(e1 + e2). Then D is isomorphic to D′λ1,λ2

in the
following easy exercise.

Exercise 7.10. Let λ1, λ2 ∈ Zp, nonzero, λ1 6= λ2, and vp(λ1) ≤ vp(λ2). Let
r = vp(λ1) + vp(λ2). Set

D′λ1,λ2
= Qpe1 ⊕Qpe2

with {
ϕ(e1) = λ1e1,

ϕ(e2) = λ2e2,
N = 0,
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Filj D′λ1,λ2
=


D′λ1,λ2

, if j ≤ 0,
Qp(e1 + e2), if 1 ≤ j ≤ r,
0, otherwise.

Then D′λ1,λ2
is admissible. Moreover, it is irreducible if and only if vp(λ1) > 0.

To conclude, we have

Proposition 7.11. Assume D is an admissible filtered (ϕ,N)-module over
Qp of dimension 2 with N = 0 such that Fil0D = D, and Fil1D 6= D, 0.
Assume D is not a direct sum of two admissible (ϕ,N)-modules of dimension
1. Then either D ∼= Da,b for a uniquely determined (a, b), or D ∼= D′λ1,λ2

for
a uniquely determined (λ1, λ2).

7.2 Proof of Proposition B1

We recall that

Proposition B1. If V is a semi-stable p-adic representation of GK , then
Dst(V ) is admissible and there is a natural (functorial in a natural way)
isomorphism

V −→ Vst(Dst(V )).

7.2.1 Construction of the natural isomorphism.

Let V be any semi-stable p-adic representation of GK of dimension h. Let
D = Dst(V ). We shall construct the natural isomorphism

V
∼→ Vst(D) = Vst(Dst(V ))

in this subsection.
The natural map

αst : Bst ⊗K0 D → Bst ⊗Qp
V

as defined in § 6.3 is an isomorphism. We identify them and call them X.
Let {v1, · · · , vh} and {δ1, · · · , δh} be bases of V over Qp and D over K0

respectively. Identify vi with 1⊗ vi and δi with 1⊗ δi, then {v1, · · · , vh} and
{δ1, · · · , δh} are both bases of X over Bst.

Any element of X can be written as a sum of b⊗ δ where b ∈ Bst, δ ∈ D
and also a sum of c⊗ v, where c ∈ Bst, v ∈ V . The actions of GK , ϕ, and N
on X are listed below:

GK-action : g(b⊗ δ) = g(b)⊗ δ, g(c⊗ v = g(c)⊗ g(v).
ϕ-action : ϕ(b⊗ δ) = ϕ(b)⊗ ϕ(δ), ϕ(c⊗ v) = ϕ(c)⊗ v.
N -action : N(b⊗ δ) = N(b)⊗ δ + b⊗N(δ), N(c⊗ v) = N(c)⊗ v.
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We also know that X is endowed with a filtration. By the map x 7→ 1 ⊗ x,
one has the inclusion

X ⊂ XdR = BdR ⊗Bst X = BdR ⊗K DK = BdR ⊗Qp
V.

Then the filtration of X is induced by

FiliXdR = FiliBdR ⊗Qp
V =

∑
r+s=i

Filr BdR ⊗K FilsDK .

We define

Vst(D) ={x ∈ X | ϕ(x) = x,N(x) = 0, x ∈ Fil0X}
={x ∈ X | ϕ(x) = x,N(x) = 0, x ∈ Fil0XdR}.

Note that V ⊂ X satisfies the above conditions. We only need to check that
Vst(D) = V .

Write x =
h∑
n=1

bn ⊗ vn ∈ Vst(D), where bn ∈ Bst. Then

(1) First N(x) = 0, i.e.
h∑
n=1

N(bn)⊗ vn = 0, then N(bn) = 0 for all 1 ≤ n ≤ h,

which implies that bn ∈ Bcris for all n.
(2) Secondly, the condition ϕ(x) = x means

h∑
n=1

ϕ(bn)⊗ vn =
h∑
n=1

bn ⊗ vn.

Then ϕ(bn) = bn, which implies that bn ∈ Be for all 1 ≤ n ≤ h.
(3) The condition x ∈ Fil0XdR implies that bn ∈ Fil0BdR = B+

dR for all
1 ≤ n ≤ h.

Applying the fundamental exact sequence (6.16)

0→ Qp → Be → BdR/B
+
dR → 0,

we have that bn ∈ Qp. Therefore x ∈ V , which implies that V = Vst(D).

7.2.2 Unramified representations.

Let D be a filtered (ϕ, N)-module with trivial filtration. Then D is of slope 0
(hence N = 0) if and only if there exists a W -lattice M such that ϕ(M) = M ,
equivalently, if D is an étale ϕ-module over K.

In this case, let P0 = FracW (k̄) be the completion of the maximal unram-
ified extension of K0 in K. Then P0 ⊂ B+

cris ⊂ Bst, is stable under GK-action,
and GK acts on P0 through GK/IK = Gal(k̄/k).

Recall
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Vst(D) = (Bst ⊗K0 D)ϕ=1,N=0 ∩ (B+
dR ⊗DK)

with

(Bst ⊗K0 D)ϕ=1,N=0 = (Bcris ⊗K0 D)ϕ=1 ⊃ (P0 ⊗K0 D)ϕ=1,

which is an unramified representation of GK of Qp-dimension equal to
dimK0 D (cf. Theorem 2.33).

On the other hand, If V is an unramified representation of GK , then

Dst(V ) ⊃ (P0 ⊗Qp V )GK

which is of Qp-dimension equal to dimQp
V . Thus V is semi-stable and Dst(V )

is admissible. Since P0 ⊂ B+
dR\Fil1B+

dR, Dst(V ) is of trivial filtration and
hence is of slope 0 by § 7.1.2. We get the following consequence.

Proposition 7.12. Every unramified p-adic representation of GK is crys-
talline and Dst induces an equivalence of categories between Repur

Qp
(GK), the

category of unramified p-adic representations of GK (equivalently RepQp
(Gk))

and the category of admissible filtered (ϕ,N)-modules with trivial filtration
(equivalently, of étale ϕ-modules over K0).

7.2.3 Reduction to the algebraically closed residue field case.

Let P be an algebraic closure of P inside of C, where

Kur
0 ⊂ P0 ⊂ P = P0K = K̂ur.

Then P ⊂ B+
dR. Note that BdR(P/P ) = BdR(K/K) = BdR, and ditto for Bst

and Bcris.
For the exact sequence

1→ IK → GK → Gk → 1,

we have IK = Gal(P/P ). If V is a p-adic representation of GK , as BIK

dR = P ,

DdR,P (V ) = (BdR ⊗Qp
V )IK

is a P -vector space with

dimP DdR,P (V ) 6 dimQp
V,

and V is a de Rham representation of IK if and only if the equality holds.
DdR,P (V ) is a P -semilinear representation of Gk. Moreover, it is trivial,

since
P ⊗K (DdR,P (V ))Gk → DdR,P (V )

is an isomorphism. Now

(DdR,P (V ))Gk = DdR(V ) = (BdR ⊗Qp
V )GK ,

Therefore,
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Proposition 7.13. V is de Rham as a representation of GK if and only if V
is de Rham as a representation of IK .

Proposition 7.14. V is semi-stable as a p-adic representation of GK if and
only if it is semi-stable as a p-adic representation of IK .

Proof. For Dst,P (V ) = (Bst ⊗Qp
V )IK , since BIK

st = P0, Dst,P (V ) is a P0-
semilinear representation of Gk, then the following is trivial:

P0 ⊗K0 (Dst,P (V ))Gk → Dst,P (V )

is an isomorphism, and Dst(V ) = (Dst,P (V ))Gk . ut

Proposition 7.15. Let V be a p-adic representation of GK , associated with

ρ : GK → AutQp
(V ).

Assume ρ(IK) is finite, then

(1)V is potentially crystalline (potentially semi-stable) and hence de Rham.
(2)The following three conditions are equivalent:

(a)V is semi-stable.
(b) V is crystalline.
(c) ρ(IK) is trivial, i.e., V is unramified.

Proof. Because of Propositions 7.13 and 7.14, we may assume k = k̄, equiva-
lently K = P , or IK = GK .

(2)⇒ (1) is obvious. (c) ⇒ (b) is by Proposition 7.12. The only thing left
to prove is: (a) V is semi-stable ⇒ (c) ρ(IK) is trivial.

Let H = Ker ρ be an open normal subgroup of IK , then K
H

= L is a finite
Galois extension of K. Write J = GK/H. Then

Dst(V ) =(Bst ⊗Qp
V )GK = ((Bst ⊗Qp

V )H)J

=(BHst ⊗Qp V )J = (K0 ⊗Qp V )J = K0 ⊗Qp V
J

because of BHst = K0. Therefore

V is semi-stable ⇔ dimK0 Dst(V ) = dimQp
V J = dimQp

V ⇔ V J = V,

which means that ρ(IK) is trivial. ut

7.2.4 Representations of dimension 1.

Let V be a p-adic representation of GK of dimension 1. Write V = Qpv, then
g(v) = η(g)v and

η : GK → Q∗p
is a character (i.e. a continuous homomorphism). Moreover, we can make η
factors through Z∗p. We call
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Definition 7.16. η is B-admissible if V is B-admissible.

Then we have
(1) η is C-admissible if and only if η is P -admissible, or if and only if η(IK)

is finite.
(2) Recall

DHT(V ) =
⊕
i∈Z

(C(−i)⊗Qp V )GK .

Then V is Hodge-Tate if and only if there exists i ∈ Z (not unique) such that
(C(−i)⊗Qp

V )GK 6= 0. Because

(C(−i)⊗Qp V )GK = (C ⊗Qp V (−i))GK ,

the Hodge-Tate condition is also equivalent to that V (−i) is C-admissible, by
Sen’s Theorem (Corollary 3.57), this is equivalent to that ηχ−i(IK) is finite
where χ is the cyclotomic character. In this case we write η = η0χ

i.

Proposition 7.17. If η : GK → Z∗p is a continuous homomorphism, then

(1) η is Hodge-Tate if and only if it can be written as η = η0χ
i with i ∈ Z and

η0 such that η0(IK) is finite.
(2) η is de Rham if and only if η is Hodge-Tate.
(3)The followings are equivalent:

(a) η is semi-stable.
(b) η is crystalline.
(c) There exist η0 : GK → Z∗p unramified and i ∈ Z such that η = η0χ

i.

Proof. We have proved (1). As for (2), V is de Rham implies that V is Hodge-
Tate, η is de Rham implies that η is Hodge-Tate, therefore the condition is
necessary. On the other hand, if η is Hodge-Tate, V (−i) is de Rham and so
is V = V (−i)(i).

(3) follows from Proposition 7.15. ut

Remark 7.18. One can check that if D is an admissible filtered (ϕ,N)-module
over K of dimension 1, then there exists a semi-stable representation V such
that D ' Dst(V ).

7.2.5 End of proof of Proposition B1.

Let V be a semi-stable p-adic representation of GK . We want to prove that
Dst(V ) is admissible. We denote by D = Dst(V ).

Let D′ be a sub K0-vector space of D stable under ϕ and N . It suffices to
prove

tH(D′) 6 tN (D′). (7.5)

(1) Assume first that dimK0 D
′ = 1. Let {v1, · · · , vh} be a basis of V over

Qp. Write D′ = K0δ, then
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ϕδ = λδ, λ ∈ K0, λ 6= 0.

Thus
tN (D′) = vp(λ) = r and Nδ = 0.

As D = (Bst ⊗Qp
V )GK , then δ =

h∑
i=1

bi ⊗ vi. Thus

ϕδ =
h∑
i=1

ϕbi ⊗ vi and Nδ =
h∑
i=1

Nbi ⊗ vi,

so ϕbi = λbi and Nbi = 0 for all i, which implies that bi ∈ Bcris.
Assume tH(D′) = s. Then δ ∈ Fils(BdR⊗Qp

V ) but /∈ Fils+1(BdR⊗Qp
V ).

The filtration
Fils(BdR ⊗Qp

V ) = FilsBdR ⊗Qp
V

implies that bi ∈ FilsBdR for all i. Now this case follows from the following
Lemma.

Lemma 7.19. If b ∈ Bcris satisfies ϕb = λb with λ ∈ K0 and vp(λ) = r, and
if b is also in Filr+1BdR, then b = 0.

Proof. Let ∆ = K0e be a one-dimensional (ϕ,N)-module with ϕe = 1
λe and

Ne = 0. Then tH(∆) = −r and

Fili∆K =

{
K, if i ≤ −r,
0, if i > −r.

Vst(∆) is a Qp-vector space of dimension 1. Then Vst(∆) = Qpb0 ⊗ e for any
ϕb0 = λb0, b0 6= 0. Thus b0 ∈ Filr BdR but /∈ Filr+1BdR. ut

Furthermore, we also see that if D = D′ is of dimension 1, then tH(D) =
tN (D).

(2) General case. Let D = Dst(V ), dimK0 D = dimQp V = h, dimK0 D
′ =

m. We want to prove tH(D′) 6 tN (D′) and the equality if m = h.
Let V1 =

∧m
V , which is a quotient of V ⊗ · · ·⊗V (m copies). The tensor

product is a semi-stable representation, so V1 is also semi-stable. Then

Dst(V1) =
∧m

Dst(V ) =
∧m

K0
D.

Now
∧m

D′ ⊂
∧m

D is a subobject of dimension 1, and

tH(
∧m

D′) = tH(D′), tN (
∧m

D′) = tN (D′),

the general case is reduced to the one dimensional case. ut
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7.3 Qpr-representations and filtered (ϕr, N)-modules.

7.3.1 Definitions.

Let r ∈ N, r ≥ 1. Denote by Qpr the unique unramified extension of Qp of
degree r contained in K. The Galois group Gal(Qpr/Q) is a cyclic group of
order r generated by the restriction of ϕ to Qpr , which is just σ, and

Qpr ⊂ P0 ⊂ B+
cris ⊂ Bst

is stable under GK and ϕ-actions.

Definition 7.20. A Qpr -representation of GK is a finite dimensional Qpr -
vector space such that GK acts continuously and semi-linearly:

g(v1 + v2) = g(v1) + g(v2), g(λv) = g(λ)g(v).

Note that such a representation V is also a p-adic representation of GK
with

dimQp
V = r dimQpr V.

We say that a Qpr -representation V of GK is de Rham (semi-stable, · · · ) if it
is de Rham (semi-stable, · · · ) as a p-adic representation.

Let V be a Qpr -representation V of GK , Write

D(m)
st,r (V ) = (Bst σm⊗Qpr V )GK , m = 0, · · · , r − 1

where σm⊗Qpr is the twisted tensor product by σm. Write Dst,r(V ) = D(0)
st,r(V ).

Then D(m)
st,r (V ) are K0-vector spaces. Write

D(m)
dR,r(V ) = (BdR σm⊗Qpr V )GK , m = 0, · · · , r − 1

and write DdR,r(V ) = D(0)
dR,r(V ). Then D(m)

dR,r(V ) are K-vector spaces.

Proposition 7.21. For every m = 0, · · · , r − 1,

dimK0 D(m)
st,r (V ) = dimK0 Dst,r(V ) ≤ dimQpr V

with equality if and only if V is semi-stable.

Proof. One has

Bst ⊗Qp
V =

r−1⊕
m=0

Bst σm⊗Qpr V.

Thus

Dst(V ) =
r−1⊕
m=0

(Bst σm⊗Qpr V )GK =
r−1⊕
m=0

D(m)
st,r (V ).
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For d ∈ D(i)
st,r(V ), then ϕjd ∈ D(i+j)

st,r (V ), where i+ j is the image of i+jmod r,
which implies

dimK0 D(m)
st,r (V ) = dimK0 Dst,r(V ),

thus
dimK0 Dst(V ) = r dimK0 Dst,r(V ).

The proposition is proved. ut

For a Qpr -representation V , we have

DdR(V ) = (BdR ⊗Qp V )GK =
r−1⊕
m=0

D(m)
dR,r(V ).

If V is semi-stable, then

D(m)
dR,r(V ) = K ⊗K0 D(m)

st,r (V ) = K ϕm⊗K0 Dst,r(V ).

Definition 7.22. A filtered (ϕr, N)-module over K is a K0-vector space ∆
equipped with two operators

ϕr, N : ∆→ ∆

such that N is K0-linear, ϕr is σr-semi-linear, and

Nϕr = prϕrN,

and with a structure of filtered K vector space on

∆K,m = K ϕm⊗K0 ∆

for m = 0, 1, 2, · · · , r − 1.

7.3.2 Main properties.

If V is a semi-stable Qpr -representation of GK , set ∆ = Dst,r(V ). Then ∆
has a natural structure of a filtered (ϕr, N)-module over K, The inclusion

∆ = (Bst ⊗Qpr V )GK ⊂ (Bst ⊗Qp V )GK

shows ∆ is stable by ϕr and N , and the filtration for

∆K,m = D(m)
dR,r(V ) = K ϕm⊗K0 ∆

comes from BdR σm⊗Qpr V .

Example 7.23. Qpr is a Qpr -representation of dimension 1, Dst,r(Qpr ) = K0

such that ϕr = σr, N = 0, and all filtrations are trivial.
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Let ∆ be a filtered (ϕr, N)-module over K, set

D = Qp[ϕ]⊗Qp[ϕr] ∆,

and set ∆m = K0 ϕm⊗K0 ∆. Then D is a filtered (ϕ,N)-module over K

and D =
r−1∑
m=0

∆m. Moreover, if V is a semi-stable p-adic representation and

if ∆ = Dst,r(V ), then the associated D = Dst(V ), ∆m = D(m)
st,r (V ) and

∆K,m = D(m)
dR,r(V ).

We call ∆ admissible if the associated D is admissible.

Proposition 7.24. Let Repst
Qpr (GK) denote the category of semi-stable Qpr -

representations of GK and MFadK (ϕr, N) denote the category of admissible
filtered (ϕr, N)-modules over K. Then the functor

Dst,r : Repst
Qpr (GK)→MFadK (ϕr, N)

is an exact and fully faithful functor.

Proof. This follows from the above association and the fact that

Dst : Repst
Qp

(GK)→MFadK (ϕ,N)

is an exact and fully faithful functor. ut

The functor Vst,r.

Let ∆ be a filtered (ϕr, N)-module. We set

Vst,r = {v ∈ Bst⊗∆ | ϕr(v) = v, N(v) = 0, 1⊗ v ∈ Fil0(K ⊗K0 (Bst⊗∆))}.

Proposition 7.25. If V is a semi-stable Qpr -representation, then

Vst,r(Dst,r(V )) = V.

Proof. The proof is analogous to the proof of Vst(Dst(V )) = V in § 7.2.1,
just need to taking into account that Bϕ

r=1
cris = Qpr (cf. Remark 6.27). ut

Tensor product.

Let V1 and V2 be two Qpr -representations. Then V1 ⊗Qpr V2 is also a Qpr -
representation. If V1 and V2 are semi-stable, then V1 ⊗Qp

V2 is a semi-stable
Qp-representation, thus V1 ⊗Qpr V2, as a quotient of V1 ⊗Qp

V2, is also semi-
stable. Therefore in this case, for every m = 0, · · · , r − 1,

D(m)
st,r (V1)⊗K0 D(m)

st,r (V2) −→ D(m)
st,r (V1 ⊗Qpr V2)
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is an isomorphism. Similarly, if V1 and V2 are de Rham, then V1 ⊗Qpr V2 is
also de Rham and analogous results hold.

Let ∆ and ∆′ be two filtered (ϕr, N)-modules. Then ∆⊗K0∆
′ is naturally

equipped with the actions of ϕr and N satisfying Nϕr = prϕrN . Moreover,

(∆⊗K0 ∆
′)K,m

∼−→ ∆K,m ⊗K ∆′K,m

as filtered K-vector spaces. Thus ∆⊗K0 ∆
′ is a filtered (ϕr, N)-module.

Computation of tH .

Let V be a de Rham Qpr -representation. Set DK = DdR(V ) and tH(V ) =
tH(DK). Set ∆K,m = D(m)

dR,r(V ) and tH,m(V ) = tH(∆K,m). Then D =
r−1⊕
m=0

∆m and

tH(V ) =
m−1∑
m=0

tH.m(V ). (7.6)

Suppose V1 and V2 are two de Rham Qpr -representations, of dimension h1

and h2 respectively. Let V = V1 ⊗Qpr V2. Then V is de Rham and ∆K,m
∼=

(∆1)k,m ⊗K (∆2)K,m and hence by Proposition 6.46,

tH,m(V ) = h2tH,m(V1) + h1tH,m(V2). (7.7)

Thus
tH(V ) = h2tH(V1) + h1tH(V2). (7.8)

If s = rb is a multiple of r, and if V is a Qpr -representation, then Qps⊗Qpr V
is a Qps -representation. Moreover, for m = 0, 1, · · · , rb−1, let m be the image
of m mod r, then

tH,m(Qps ⊗Qpr V ) = tH,m(V ). (7.9)

7.3.3 The Qpr -representation V(r).

(XX: to be fixed)
Let r ≥ 1 and Xr = {b ∈ B+

cris | ϕr(b) = pb}.
Let P (x) = xp

r

+ px and let F be the Lubin-Tate formal group associ-
ated to P , i.e., F is the unique commutative formal group over Zp such that
F (P (x), P (y)) = P (F (x, y)). Through F , mC = pOC and mR are equipped
with abelian group structures. For x ∈ mR, set

fr(x) =
∑
n∈Z

p−n[xp
nr

].

Then
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Proposition 7.26. fr is an isomorphism of groups from mR with the above
group structure to Xr. One has an exact sequence

0 −→ V(r) −→ Xr
θ−→ C −→ 0,

where V(r) is the image of fs of the Lubin-Tate formal group associated to
Qpr , a Qpr -representation of dimension 1.

Proof. We first check that fr is well defined. Suppose x = (x(0), · · · , x(n), · · · ) ∈
R, we can certainly write it as x = (x(n))n∈Z by setting x(n) = (x(n+1))p for
n < 0. There exist n0 ∈ Z such that x(n0r) ∈ pOC . For u = xp

n0r

, then
[u]n

n! ∈ Acris for every n ∈ N and the series

+∞∑
n=0

p−n[up
nr

] =
+∞∑
n=0

(pnr)!
pn

· [u]
pnr

(pnr)!
∈ Acris.

Thus
+∞∑
n=n0

p−n[xp
nr

] = p−n0

+∞∑
n=n0

p−n[up
nr

] ∈ B+
cris.

Since
∑−1
n=−∞ p−n[up

nr

] converges in W (R),

n0−1∑
n=−∞

p−n[xp
nr

] = p−n0

−1∑
n=−∞

p−n[up
nr

] ∈ B+
cris.

Therefore fr(x) is a well defined element in B+
cris. It is easy to see that

ϕr(fr(x)) = pfr(x) and hence fr is well defined over Xr.
We show fr is surjective. For b ∈ Xr, assume b ∈ Acris. Then b is the limit

of elements bn of the form bn =
∑
i≥−n p

i[ap
−i

n,i ] such that ϕr(bn) − pbn → 0.

This implies that ap
r−1

n,i+1 − an,i tends to 0. (XX to be fixed)
Let X0

r = {b ∈ Acris | ϕr(b) = pb, θ(b) ∈ pOC}. To show θ(Xr) = C, it
suffices to show that θ(X0

r ) = pOC . Since X0
r is closed in Acris, it is separated

and completed by the p-adic topology, it suffice to show θ induces a surjection
from X0

r to pOC/p2OC .
Suppose a ∈ pOC . Suppose αr is a solution of the equation αp

r

r = p. If
p 6= 2 or r ≥ 2 (resp. if p = 2 and r = 1), suppose y ∈ OC is a solution of the
equation

yp
r

+ αry = p−1a (resp. y4 + y2 + α1y = p−1a).

Let x = αry and u ∈ R such that u(r) = x. Since u(0) = xp
r

= pyp
r ∈ pOC , we

have [u]n

n! ∈ Acris for every n ∈ N. Then z = fr(u) ∈ Xr ∩Acris. By computing
the valuation one has

θ(z) ≡ u(0) + pu(r) = pyp
r

+ pαry = amod p2OC
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if p 6= 2 or r ≥ 2, or

θ(z) ≡ 1
2
(u(0))2 + u(0) + 2u(1) = 2y4 + 2y2 + 2α1y = amod22OC

if p = 2 and r = 1. Thus θ is surjective and we actually showed that θ ◦ fs is
surjective.

Now since XGK
r = {x ∈ K0 | ϕr(x) = px} = 0 and CGK = K 6= 0,

and since θ commutes with the action of GK , θ is not a bijection from Xr

to C, i.e., the kernel is not 0 and thus there exists 0 6= v ∈ Xr ∩ Fil1BdR.
Moreover, for any nonzero v1, v2 ∈ Xr ∩ Fil1BdR, then v1/v2 ∈ Bϕ

r=1
cris . We

may assume v1/v2 ∈ B+
dR, then v1/v2 ∈ Fil0Bϕ

r=1
cris = Qpr and v1 ∈ Qprv2

and Qprv1 = Qprv2 = Xr ∩ Fil1BdR.
ut

Now set V(r) = Fil1BdR ∩ Xr, the above lemma tells us that V(r) is a
Qpr -representation of dimension 1, and there is an exact sequence

0→ V(r) → Xr = (B+
cris)

ϕr=p ϕ−→ C −→ 0.

Thus V(r) is a crystalline representation. Pick any nonzero v ∈ V(r), then
V(r) = Qpr · v. Note that vϕ(v)ϕ2(v) · · ·ϕr−1(v) ∈ B+

cris ∩Fil1BdR = Qp(1) =
Qpt (cf. Theorem 6.25), as t is invertible in Bcris, so is v. Moreover, since
v ∈ B+

cris ∩ Fil1BdR, ϕi(v) ∈ B+
cris ⊂ B+

dR, v−1 must be in Fil−1BdR − B+
dR

and ϕi(v) ∈ B+
dR − Fil1BdR.

Now e = v−1 ⊗ v ∈ Dst,r(V ), thus

Dst,r(V ) = K0e, ϕ
re = p−1e, Ne = 0.

Then ∆ = Dst,r(V(r)) = K0e, and

∆K,m = K ϕm⊗K0 K0e = Kem, em = 1⊗ e = ϕm(e)

for m = 0, 1, · · · , r − 1. If m > 0, then

Fili∆K,m =

{
Kem, if i ≤ 0;
0, if i > 0.

If m = 0, then

Fili∆K,0 =

{
Ke0, if i < 0;
0, if i ≥ 0.

Thus tH,0(V(r)) = −1 and tH,m(V(r)) = 0 for m 6= 0.
Moreover, for a ∈ Z, set

V a(r) =

{
Syma

Qpr V(r), if a ≥ 0;
LQpr (V −a(r) ,Qpr ), if a < 0.
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Then V a(r) is a Qpr -representation of dimension 1 and va is a generator of V a(r),

and D(m)
st,r (V a(r)) is generated by ϕm(v−a ⊗ va). One has

griDdR(V a(r)) =


0, if i /∈ {−a, 0};
DdR,r(V a(r)), if i = −a;⊕
m6=0

D(m)
dR,r(V

a
(r)), if i = 0.

Thus tH,0(V a(r)) = −a and tH,m(V a(r)) = 0 for m 6= 0.

Remark 7.27. Let π = p or −p be a uniformizing parameter of Qpr . Consider
the Lubin-Tate formal group for Qpr associated to π. The fact π ∈ Qp implies
that this Lubin-Tate formal group is defined over Zp, and

Vp(LT ) = Qp ⊗Zp
Tp(LT ).

Then V(r) is nothing but Vp(LT ).

7.4 Outline of the proof

7.4.1 Reduction of Proposition B2 to Proposition B.

Lemma 7.28. Let F be a field and J a subgroup of the group of automor-
phisms of F . Let E = F J . Let ∆ be a finite dimensional E-vector space,
and

∆F = F ⊗E ∆.

J acts on ∆F through

j(λ⊗ δ) = j(λ)⊗ δ, if j ∈ J, λ ∈ F, δ ∈ ∆.

By the map δ 7→ 1 ⊗ δ, we identify ∆ with 1 ⊗E ∆ = (∆F )J . Let L be a sub
F -vector space of ∆F . Then there exists ∆′, a sub E-vector space of ∆ such
that L = F ⊗E∆′ if and only if g(L) = L for all g ∈ J , i.e., L is stable under
the action of J .

Proof. The only if part is trivial. If L is stable under the action of G, then we
have an exact sequence of F -vector spaces with G-action

0 −→ L −→ ∆F −→ ∆F /L −→ 0,

Taking the G-invariants, we have an exact sequence of E-vector spaces

0 −→ LG −→ ∆ −→ (∆F /L)G.

Thus dimE L
G = dimF L and ∆′ = LG satisfies L = F ⊗E ∆′. ut
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Proposition 7.29. Let D be an admissible filtered (ϕ,N)-module over K of
dimension h > 1. Let V = Vst(D). Then dimQp

V 6 h, V is semi-stable and
Dst(V ) ⊂ D is a subobject.

Remark 7.30. The above proposition implies that, if D is admissible, the fol-
lowing conditions are equivalent:

(1) D ' Dst(V ) where V is some semi-stable p-adic representation.
(2) dimQp

Vst(D) > h.
(3) dimQp Vst(D) = h.

Proof. We may assume V 6= 0. Apply the above Lemma to the case

∆ = D, F = Cst = FracBst, J = GK , E = CGK
st = K0,

Then
∆F = Cst ⊗K0 D ⊃ Bst ⊗K0 D ⊃ V.

Let L be the sub-Cst-vector space of Cst ⊗K0 D generated by V . The actions
of ϕ and N on Bst extend to Cst, thus L is stable under ϕ, N and GK-actions.
By the lemma, there exists a sub K0-vector space D′ of D such that

L = Cst ⊗K0 D
′.

The fact that L is stable by ϕ and N implies that D′ is also stable by ϕ and
N .

Choose a basis {v1, · · · , vr} of L over Cst consisting of elements of V .
Choose a basis {d1, · · · , dr} of D′ over K0, which is also a basis of L over Cst.
Since V ⊂ Bst ⊗Qp

D,

vi =
r∑
j=1

bijdj , bij ∈ Bst.

By the inclusion Bst ⊗K0 D
′ ⊂ Bst ⊗K0 D, we have∧r

Bst
(Bst ⊗K0 D

′) ⊂
∧r

Bst
(Bst ⊗K0 D),

equivalently,
Bst ⊗K0

∧r

K0
D′ ⊂ Bst ⊗K0

∧r

K0
D.

Let b = det(bij) ∈ Bst, then b 6= 0. Let

v0 = v1 ∧ v2 ∧ · · · ∧ vr, d0 = d1 ∧ d2 ∧ · · · ∧ dr,

then v0 = bd0. Since vi ∈ Vst(D′), then v0 ∈ Vst(
∧r

D′), which is 6= 0 as
v0 6= 0. The facts

dimK0

∧r
D′ = 1 and Vst(

∧r
D′) 6= 0
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imply that
tH(
∧r

D′) > tN (
∧r

D′).

The admissibility condition then implies that tH(D′) = tN (D′), thus tH(
∧r

D′) =
tN (
∧r

D′) and
Vst(

∧r
D′) = Qpv0.

For any v ∈ Vst(D′) = V , write v =
r∑
i=1

civi with ci ∈ Cst, 1 6 i 6 r, then

v1 ∧ · · · ∧ vi−1 ∧ v ∧ vi+1 ∧ · · · ∧ vr = civ0 ∈
∧r

Qp

V ⊂ Vst(
∧r

D′) = Qpv0,

therefore ci ∈ Qp. Thus V as a Qp-vector space is generated by v1, · · · , vr and

r = dimK0 D
′ 6 dimK0 D.

Because
Vst(D′) = V and Dst(V ) = D′,

V is also semi-stable. ut

By Proposition 7.29, to prove Theorem A and Theorem B, it suffices to
prove

Proposition A (=Theorem A). Let V be a p-adic representation of GK
which is de Rham. Then V is potentially semi-stable.

Proposition B. Let D be an admissible filtered (ϕ,N)-module over K. Then
dimQp Vst(D) = dimK0 D.

7.4.2 Outline of the Proof of Propositions A and B.

Let DK be the associated filtered K-vector space, where

DK =

{
DdR(V ), Case A,
K ⊗K0 D, Case B.

Let d = dimK DK and let the Hodge polygon

PH(DK) =

{
PH(V ), Case A,
PH(D), Case B.

We shall prove Proposition A and Proposition B by induction on the com-
plexity of PH . The proof is divided in several steps.

Step 1: PH is trivial. i.e. the filtration is trivial.
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Proof (Proposition A in this case). From the following exact sequence:

0→ Fil1BdR → Fil0BdR = B+
dR → C → 0,

⊗V and then take the invariant under GK , we have

0→ Fil1DK → Fil0DK → (C ⊗Qp V )GK .

Because the filtration is trivial, Fil1DK = 0 and Fil0DK = DK , then we have
a monomorphism DK = Fil0DK → (C ⊗Qp

V )GK , and

dimK(C ⊗Qp
V )GK > dimK DK = dimQp

V,

thus the inequality is an equality and V is C-admissible. This implies that
the action of IK is finite, hence V is potentially semi-stable (even potentially
crystalline, cf. Proposition 7.15). ut

Proof (Proposition B in this case). We know that in this case, D ' Dst(V )
where

V = (P0 ⊗K0 D)ϕ=1

is an unramified representation. ut

Step 2: Show the following Propositions 2A and 2B and thus reduce to the
case that V and D are irreducible.

Proposition 2A. If 0→ V ′ → V → V ′′ → 0 is a short exact sequence of p-
adic representations of GK , and if V ′, V ′′ are semi-stable and V is de Rham,
then V is also semi-stable.

Proposition 2B. If 0 → D′ → D → D′′ → 0 is a short exact sequence of
admissible filtered (ϕ,N)-modules over K, and if

dimQp Vst(D′) = dimK0 D
′, dimQp Vst(D′′) = dimK0 D

′′,

then dimQp
Vst(D) = dimK0 D.

Step 3: Reduce the proof to the case that tH = 0.

Step 4: Prove Proposition A and Proposition B in the case tH = 0.

7.5 Proof of Proposition 2A and Proposition 2B

7.5.1 Proof of Proposition 2A

To be filled. Proposition 2A is due to Hyodo [Hyo88] when k is finite using
Galois cohomology and Tate duality. The proof in the general case is due to
Berger [Ber01, Chapitre VI] and uses the theory of (ϕ, Γ )-modules. In [Ber02]
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he also gave a proof as a corollary of Theorem A. We shall give a proof of
Proposition 2A here using Sen’s method which is due to Colmez. (XX: to be
fixed)

By Proposition 2A, we immediately get the proof of Proposition 5.30(3),
which claims that if V is a nontrivial extension of Qp(1) by Qp, then V is not
de Rham. Indeed, if V is de Rham, by Proposition 2A, it must be semi-stable.
However, there is no nontrivial extension of (ϕ,N)-module of Dst(Qp(1)) by
Dst(Qp), which is an easy exercise as in § 7.1.5.

7.5.2 Fundamental complex of D.

For Proposition 2B, we need to introduce the so-called fundamental complex
of D. Write

V0
st(D) = {b ∈ Bst ⊗K0 D | Nb = 0, ϕb = b}, (7.10)

V1
st(D) = BdR ⊗K DK/Fil0(BdR ⊗K DK) (7.11)

where
Fil0(BdR ⊗K DK) =

∑
i∈Z

FiliBdR ⊗K Fil−iDK .

There is a natural map V0
st(D)→ V1

st(D) induced by

Bst ⊗K0 D ⊂ BdR ⊗K DK � V1
st(DK).

Then we have an exact sequence

0→ Vst(D)→ V0
st(D)→ V1

st(D).

Proposition 7.31. Under the assumptions of Proposition 2B (not including
admissibility condition), then for i = 0, 1, the sequence

0→ Vi
st(D

′)→ Vi
st(D)→ Vi

st(D
′′)→ 0 (7.12)

is exact.

Proof. For i = 1. By assumption, the exact sequence 0 → D′K → DK →
D′′K → 0 implies that the sequences

0→ BdR ⊗K D′K → BdR ⊗K DK → BdR ⊗K D′′K → 0

and

0→ FiliBdR⊗KFil−iD′K → FiliBdR⊗KFil−iDK → FiliBdR⊗KFil−iD′′K → 0

are exact. Thus we have a commutative diagram (where we write BdR ⊗ D
for BdR ⊗K DK)
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0

��

0

��

0

��
0 // Fil0(BdR ⊗D′) //

��

Fil0(BdR ⊗D) //

��

Fil0(BdR ⊗D′′) //

��

0

0 // BdR ⊗D′ //

��

BdR ⊗D //

��

BdR ⊗D′′ //

��

0

0 // V1
st(D

′) //

��

V1
st(D) //

��

V1
st(D

′′) //

��

0

0 0 0

where the three columns and the top and middle rows of the above diagram
are exact, hence the bottom row is also exact and we get the result for i = 1.

For i = 0, note that

V0
st(D) = {x ∈ Bst ⊗K0 D | Nx = 0, ϕx = x}.

Let
V0

cris(D) = {y ∈ Bcris ⊗K0 D | ϕy = y}.

Let u = log[$] for $(0) = −p, then

Bst = Bcris[u], N = − d

du
and ϕu = pu.

With obvious convention, any x ∈ Bst ⊗K0 D can be written as

x =
+∞∑
n=0

xnu
n, xn ∈ Bcris ⊗K0 D

and almost all xn = 0. The map

x 7→ x0

defines a Qp-linear bijection between V0
st(D) and V0

cris(D) which is functorial
(however, which is not Galois equivalent). Thus it suffices to show that

0→ V0
cris(D

′)→ V0
cris(D)→ V0

cris(D
′′)→ 0

is exact. The only thing which matters is the structure of ϕ-isocrystals. There
are two cases.

(a) the case k is algebraically closed. For the exact sequence
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0→ D′ → D → D′′ → 0,

it is well known that this sequence splits as a sequence of ϕ-isocrystals. Thus
D ' D′ ⊕D′′ and V0

cris(D) = V0
cris(D

′)⊕V0
cris(D

′′).

(b) the case k is not algebraically closed. Then

V0
cris(D) = {y ∈ Bcris⊗K0 D | ϕy = y} = {y ∈ Bcris⊗P0 (P0⊗K0 D) | ϕy = y}

with P0 = FracW (k̄) and Bcris ⊃ P0 ⊃ K0. P0 ⊗K0 D is a ϕ-isocrystal over
P0 whose residue field is k̄, thus the following exact sequence

0→ P0 ⊗K0 D
′ → P0 ⊗K0 D → P0 ⊗K0 D

′′ → 0

splits and hence the result follows. ut

Proposition 7.32. If V is semi-stable and if D ∼= Dst(V ), then the sequence

0→ Vst(D)→ V0
st(D)→ V1

st(D)→ 0 (7.13)

is exact.

Proof. Use the fact

Bst ⊗Qp V = Bst ⊗K0 D ⊂ BdR ⊗Qp V = BdR ⊗K DK ,

then
V0

st(D) = {x ∈ Bst ⊗Qp V | Nx = 0, ϕx = x}.

As N(b⊗ v) = Nb⊗ v and ϕ(b⊗ v) = ϕb⊗ v, then

V0
st(D) = Be ⊗Qp

V.

By definition and the above fact,

V1
st(D) = (BdR/B

+
dR)⊗Qp V.

From the fundamental exact sequence (6.16)

0→ Qp → Be → BdR/B
+
dR → 0

tensoring V over Qp, we have

0→ V → Be ⊗Qp
V → (BdR/B

+
dR)⊗Qp

V → 0

is also exact. Since V = Vst(D),

0→ Vst(D)→ V0
st(D)→ V1

st(D)→ 0

is exact. ut
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Proof (Proof of Proposition 2B). Let 0 → D′ → D → D′′ → 0 be the short
exact sequence. Then we have a commutative diagram

0

��

0

��

0

��
0 // Vst(D′) //

��

V0
st(D

′) //

��

V1
st(D

′) //

��

0

0 // Vst(D) //

��

V0
st(D) //

��

V1
st(D)

��
0 // Vst(D′′) // V0

st(D
′′) //

��

V1
st(D

′′) //

��

0

0 0

which is exact in rows and columns by Propositions 7.31 and 7.32. A dia-
gram chasing shows that Vst(D) → Vst(D′′) is onto, thus dimK0 Vst(D) =
dimQp V . ut

7.6 Reduction to the case tH = 0.

7.6.1 The case for V .

In this case tH(V ) = tH(DK). For any i ∈ Z, we know that V is de Rham if
and only if V (i) is de Rham. Let d = dimK DK , then tH(V (i)) = tH(DK)−i·d.
Choose i = tH(V )

d , then tH(V (i)) = 0. If the result is known for V (i), then it
is also known for V = V (i)(−i). However, this trick works only if tH(V )

d ∈ Z.

Definition 7.33. If V is a p-adic representation of GK , let r ≥ 1 be the
biggest integer such that we can endow V with the structure of a Qpr -
representation. The reduced dimension of V is the integer

dimQp V

r = dimQpr V .

We have

Proposition 7.34. For h ∈ N, h ≥ 1, the following are equivalent:

(1)Any p-adic de Rham representation V of GK of reduced dimension 6 h
and such that tH(V ) = 0 is potentially semi-stable.

(2)Any p-adic de Rham representation of GK of reduced dimension 6 h is
potentially semi-stable.
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Proof. We just need to show (1) ⇒ (2). Let V be a p-adic de Rham represen-
tation of GK of reduced dimension h, we need to show that V is potentially
semi-stable.

There exists an integer r ≥ 1, such that we may consider V as a Qpr -
representation of dimension h. For s ≥ 1 and for any a ∈ Z, let V(s) be the
Qps -representation as given in § 7.3.3, then V a(s) is also a Qps -representation
of dimension 1. Choose s = rb with b ≥ 1 and a ∈ Z, and let

V ′ = V ⊗Qpr V
a
(s),

it is a Qps -representation of dimension h. Since V(s) is crystalline, it is also de
Rham, thus V a(s) is de Rham and V ′ is also de Rham.

By (7.8), then

tH(V ′) = dimQpr V · tH(V a(s)) + dimQpr V
a
(s) · tH(V ) = btH(V )− ah.

Choose a and b in such a way that tH(V ′) = 0. Apply (1), then V ′ is potentially
semi-stable. Thus

V ′ ⊗Qps V
−a
(s) = V ⊗Qpr Qps ⊃ V

is also potentially semi-stable. ut

7.6.2 The case for D.

Definition 7.35. If D is a filtered (ϕ,N)-module over K, let r ≥ 1 be the
biggest integer such that we can associate D with a filtered (ϕr, N)-module ∆
(i.e. D = ∆⊗Qp[ϕr] Qp[ϕ]) over K. The reduced dimension of D is the integer
dimK0 V

r .

We have

Proposition 7.36. For h ∈ N, h ≥ 1, the following are equivalent:

(1)Any admissible filtered (ϕ,N)-module D over K of reduced dimension ≤ h
and such that tH(D) = 0 satisfies dimQp Vst(D) = dimK0(D).

(2)Any admissible filtered (ϕ,N)-module D over K of reduced dimension ≤ h
satisfies dimQp

Vst(D) = dimK0(D).

Proof. We just need to show (1) ⇒ (2). Let D be an admissible filtered
(ϕ,N)-module D over K of reduced dimension h and of dimension d = rh.
Let ∆ be the associated (ϕr, N)-module. We need to show dimQp

Vst(D) =
dimK0(D) = rh.

By Proposition 2B, we may assume that D is irreducible. Then N = 0
(otherwise Ker (N : D → D) is a nontrivial admissible subobject of D).
Moreover, for any nonzero x ∈ D, D is generated as a K0-vector space
by {x, ϕ(x), · · · , ϕrh−1(x)} and ∆ is generated as a K0-vector space by
{x, ϕr(x), · · · , ϕr(h−1)(x)}. Indeed, let D(x) be generated by ϕi(x), then D(x)
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is invariant by ϕ and D is a direct sum of ϕ-modules of the form D(x), thus
D(x) is admissible and it must be D by the irreducibility.

Let a = tH(D), b = h. Let D(rh) = Dst(V a(rh)), and let ∆(rh) =
Dst,rh(V a(rh)) which is one-dimensional. We also have N = 0 in this case.
We consider the tensor product D′ = D ⊗ϕr-module D(rh) as ϕr-module.
Then D′ is associated with a ϕrh-module ∆′ = ∆ ⊗Qp[ϕr] ∆(rh) and is of
reduced dimension ≤ h. Moreover, let {e1, · · · , eh} be a K0-basis of ∆, f
be a generator of ∆(rh), then ∆′m (m = 0, 1, · · · , rh − 1) is generated by
{ϕm(e1⊗f), · · · , ϕm(eh⊗f)}. We claim that D′ is admissible and tH(D′) = 0.

The second claim is easy, since by the above construction and the definition
of tH , we have tH(D′) = h(tH(D)− a) = 0.

For the first claim, for x 6= 0, x ∈ D, let Dx be the K0-subspace of D
generated by ϕrhi(x) for i ∈ N, let D′x be the K0-subspace of D′ generated by
ϕm(z⊗ f) for all z ∈ Dx. Then D′x is the minimal subobject of D′ containing
x ⊗ f and every subobject D′1 of D′ is a direct sum of D′x. However, we
have tH(D′x) = dimK0 Dx · tH(D(rh)) + htH(Dx) and tN (D′x) = dimK0 Dx ·
tN (D(rh)) + htN (Dx), thus the admissibility of D implies the admissibility of
D′.

Now by (1), D′ satisfies dimQp
Vst(D′) = dimK0(D

′), which means V ′ =
Vst(D′) is a semi-stable Qprh-representation. Thus W = V ′ ⊗Q

prh
V −a(rh) is

also semi-stable, the associated (ϕrh, N) is given by ∆′ ⊗Qp[ϕrh] ∆
∗
(rh). One

sees that D is a direct factor of Dst(W ), hence it is also semi-stable and (2)
holds. ut
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Let r, h ∈ N− {0}. By Propositions 7.34 and 7.36, we are reduced to show

Proposition 3A. Let V be a de Rham Qpr -representation of dimension h
with tH(V ) = 0, then V is potentially semi-stable.

Proposition 3B. Let ∆ be an admissible filtered (ϕr, N)-module over K0 of
K0-dimension h, D be the associated filtered (ϕ,N)-module with tH(D) = 0.
Then

dimQpr Vst(D) = h.

7.7.1 The Fundamental Lemma of Banach-Colmez space.

(XX: to be fixed)
Recall U = {u ∈ Bcris | ϕ(u) = pu} ∩ B+

dR. Set B2 = B+
dR/Fil2BdR. We

have a commutative diagram
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0 −−−−→ Qp(1) −−−−→ U
θ−−−−→ C −−−−→ 0

incl

y y Id

y
0 −−−−→ C(1) −−−−→ B2

θ−−−−→ C −−−−→ 0

where all rows are exact and all the vertical arrows are injective.
Suppose s is an integer ≥ 2. Suppose λ1, λ2, · · · , λs ∈ C are not all zero.

Set

Y = {(u1, u2, · · · , us) ∈ Us | ∃ c ∈ C such that for all n θ(un) = cλn}.

Then one has an exact sequence

0 −→ Qp(1)s −→ Y
(ui) 7→c−−−−→ C −→ 0.

Suppose b1, b2, · · · , bs ∈ B2, not all zero, such that
∑s
n=1 λnθ(bn) = 0. Then

the map

ρ : Y → B2, (u1, · · · , us) 7→
s∑
i=1

biui

has image in C(1), as θ(
∑s
i=1 biui) =

∑
θ(bi)θ(ui) = c

∑
θ(bi)λi = 0.

Proposition 7.37 (Fundamental Lemma, strong version). Assume the
above hypotheses. Then Im ρ ⊂ C(1) and

- either Im ρ = ρ(Qp(1)s) and hence dimQp
Im ρ ≤ s,

- or Im ρ = C(1) and dimQp Ker ρ = s.

To prove the proposition, we need two lemmas.
First recall Xs = (B+

cris)
ϕs=p = {b ∈ B+

cris | ϕs(b) = pb}.

Lemma 7.38. Suppose µ1, · · · , µs ∈ C, not all zero. Let δ : Xs → C be
defined by

δ(x) =
s∑
r=1

µrθ(ϕr−1x).

Then δ is onto and dimQp Ker δ = s.

Proof. Let x ∈ mR and set

fs(x) =
∑
n∈Z

p−n[xp
ns

].

Similar to the proof of Proposition 7.26, we see that fs(x) is a well defined
element inside Xs.

ut
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Remark 7.39. If µ1, · · · , µs are algebraic over K, then the above lemma is
essentially Theorem B (the weakly admissible implies admissible Theorem) in
a special case.

In fact, without loss of generality, we may assume µi ∈ K. We let D =
K0e1 ⊕ · · · ⊕K0es be a ϕ-isocrystal such that ϕ(ei) = ei+1 for 1 ≤ i ≤ s− 1
and ϕ(es) = 1

pe1. Then D is simple and tN (D) = −1. If we define the filtration
on DK by Fil−1DK = DK , Fil0DK = L which is a hyperplane in DK and
Fil1DK = 0. Then D is an admissible filtered (ϕ,N = 0)-module. Theorem B
then implies that Vst(D) is a crystalline p-adic representation of dimension s.

However, in this case, for

(B+
cris⊗K0D)ϕ=1 ⊂ V0

cris(D) = (Bcris⊗K0D)ϕ=1 and
B+

dR⊗DK

Fil0(BdR ⊗K DK)
⊂ V1

st(D) =
BdR⊗DK

Fil0(BdR ⊗K DK)
,

we have an exact sequence

0→ Vst(D)→ (B+
cris ⊗K0 D)ϕ=1

δ′→
B+

dR⊗DK

Fil0(BdR ⊗K DK)
→ 0.

On the other hand, (B+
cris ⊗K0 D)ϕ=1

∼→ Xs by sending x ⊗ e1 to x and
B+

dR⊗DK
Fil0(BdR ⊗K DK) is isomorphic to B+

dR/Fil1BdR ⊗K DK/L ∼= C. If
we set L = {x ∈ DK |

∑s
i=1 µiei = 0}, through the isomorphisms, the map δ′

is nothing but δ (as an exercise, one can check the details).

Lemma 7.40. Suppose λ1, · · · , λs ∈ C are linearly independent over Qp.
Then there exists a1, · · · , as ∈ Xs such that

(1)
s∑
i=0

λiθ(ϕr(ai)) = 0 for r = 0, 1, · · · , s− 1.

(2) Let A = (aij)1≤i,j≤s with aij = ϕi−1(aj), then detA 6= 0.

Remark 7.41. (1) We have θ(detA) = 0 since λ1, · · · , λs ∈ C are linearly
independent over Qp.

(2) Write d = detA. Then ϕ(d) = (−1)spd. Suppose κ0 ∈ Qp2 such that
κp−1

0 = −1. Then ϕ(κs0d) = p(κs0d), hence κs0d ∈ Qp(1). We can write d = κt
with κ ∈ Q∗p2 .

(3) Suppose A′ ∈ Mh(B+
cris) such that A′A = AA′ = tI. For any lifting

(λ̂1, · · · , λ̂s) of (λ1, · · · , λs) in B+
cris, then

A(λ̂1, λ̂2, · · · , λ̂s)T = (tβ1, tβ2, · · · , tβs)T

(where T means the transpose of a matrix), thus

(λ̂1, λ̂2, · · · , λ̂s)T = A′(β1, β2, · · · , βs)T .

If we varying λ̂i, we then get an identity of matrices

P := (λ̂ij) = A′(βij) := A′B−1
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with λ̂ij a lifting of λj for every 1 ≤ j ≤ s. Choose λ̂ij such that P ∈ GLh(B+
cris),

then B = P−1A′ ∈Mh(B+
cris) and A′ = PB.

Proof (Proof of Proposition 7.37). Our proof is divided into two steps:
(1) Suppose λ1, · · · , λs are linearly independent over Qp. Choose a1, · · · , as

as in Lemma 7.40. We shall define an isomorphism

α : Y → Xs y = (u1, · · · , us) 7→ x =
s∑
i=1

ai
ui
ti
.

First ϕs(x) = px since ϕs(ai) = pai and ϕ(ui/t) = ui/t. To see that b ∈ Xs,
we just need to show b ∈ B+

cris.
However, tx =

∑
aiui ∈ B+

cris, by Theorem 6.25(1), it suffice to show
θ(ϕr(tx)) = 0 for all r ∈ N, or even for 0 ≤ r ≤ s− 1. In this case, ϕr(tx) =

pr
s∑
i=1

ϕ(ai)ui and θ(ϕr(tx)) = cpr
s∑
i=1

θ(ϕr(ai))λi = 0.

We define an map α′ : Xs → Y and check it is invertible to α. Note that
A(u1

t ,
u2
t , · · · ,

us

t )T = (x, ϕ(x), · · · , ϕs−1(x))T . Since detA = κt, we can find
A′ ∈Mh(B+

cris) such that A′A = AA′ = tI, we just set

α′(x) = (x, ϕ(x), · · · , ϕs−1(x))A′T = (x, ϕ(x), · · · , ϕs−1(x))BTPT .

It is clear to see that α′(x) ∈ Y . From the construction one can check α and
α′ are inverse to each other.

The composite map Xs
α−1

−→ Y
ρ→ C(1) then sends x ∈ Xs to

(b1, · · · , bs)A′(x, ϕ(x), · · · , ϕs−1(x))T = (b1, · · · , bs)PB(x, ϕ(x), · · · , ϕs−1(x))T =
s∑
r=1

crϕ
r−1(x).

Since θ((b1, · · · , bs)P ) = 0, θ(cr) = 0. Thus the composite map is nothing
but x 7→ t ·

∑s
r=1 θ(

cr

t )θ(ϕr−1(x)). By Lemma 7.38, ρ is onto and Ker ρ is a
Qp-vector space of dimension s.

(2) Suppose λ1, · · · , λs are not linearly independent over Qp. We sup-
pose λ1, · · · , λs′ are linearly independent and λs′+1, · · · , λs are generated by
λ1, · · · , λs′ . Thus

λj =
s′∑
i=1

bijλi, bij ∈ Qp.

Let Y ′ be the corresponding Y for λ1, · · · , λs′ . One checks easily that

Y −→ Y ′ ⊕Qp(1)s−s
′
,

(u1, · · · , us) 7−→ (u1, · · · , us′ , us′+1 −
s′∑
i=1

bi,s′+1ui, · · · , us′+1 −
s′∑
i=1

bi,sui)

is a bijection. Let vj = uj −
∑s′

i=1 bijui for j > s′, then
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ρ(x) =
s′∑
i=1

(bi +
s∑

j=s′+1

bjaij)ui +
s∑

j=s′+1

bjcj

ut

7.7.2 Application of the Fundamental Lemma.

If V is a finite dimensional Qp-vector space, we let VC = C⊗Qp
V . By tensoring

the diagram at the start of this subsection by V (−1), we have a commutative
diagram

0 −−−−→ V −−−−→ U(−1)⊗Qp V −−−−→ VC(−1) −−−−→ 0

incl

y incl

y Id

y
0 −−−−→ VC −−−−→ B2(−1)⊗Qp

V
θ−−−−→ VC(−1) −−−−→ 0

where all rows are exact and all the vertical arrows are injective.

Proposition 7.42. Let V be a Qp-vector space of finite dimension s ≥ 2.
Suppose there is a surjective B2-linear map η : B2(−1) ⊗Qp V → B2(−1)
and denote η : VC(−1) → C(−1) the deduced C-linear map by passage to
the quotient. Suppose X is a sub-C-vector space of dimension 1 of VC(−1)
and X its inverse image of U(−1) ⊗Qp

V . Suppose that X ⊂ Ker η, then the
restriction ηX of η on X can be considered as a map from X to C.

Suppose η(V ) 6= η(X). Then ηX : X → C is surjective and its kernel is a
Qp-vector space of dimension s.

Proof. Suppose {e1, e2, · · · , es} is a basis of V over Qp. Then e′n = t−1 ⊗ en
forms a basis of free B2-module B2(−1)⊗Qp

V . Write η(e′n) = vn ⊗ t−1 with
vn ∈ B2.

The images e′n of e′n in VC(−1) forms a basis of it as a C-vector space.
Suppose λ =

∑s
n=1 λne

′
n is a nonzero element of X. The fact that X ⊂ Ker η

implies that
∑
λnθ(vn) = 0 and we can apply the precedent proposition. The

map ν : Us → U(−1)⊗Qp
V which sends (u1, u2, · · · , un) to

∑
(un⊗ t−1)⊗ en

is bijective and its restriction νY on Y is a bijection from Y to X. One thus
have a commutative diagram

Y
ρ−−−−→ C(1)

νY

y y×t−1

X
ηX−−−−→ C

whose vertical lines are bijection. The proposition is nothing but a reformu-
lation of the Fundamental Lemma. ut
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Proposition 7.43. Let V1 be a Qp-vector space of finite dimension s. Suppose
Λ1 = B+

dR⊗Qp
V1 and Λ2 a sub-B+

dR-module of Λ1(−1) such that (Λ1 +Λ2)/Λ1

and (Λ1 + Λ2)/Λs are simple B+
dR-modules. Let X be the inverse image of

Λ1 + Λ2 in U(−1)⊗Qp V1 and

ρ : U(−1)⊗Qp V1 −→ Λ1(−1)/Λ2

the natural projection. Then
(1) either dimQp ρ(X) ≤ s and the kernel of ρ is not finite dimensional

over Qp;
(2) or ρ is surjective and its kernel is a Qp-vector space of dimension s.

Proof. We begin by observing that, since B+
dR is a discrete valuation ring with

residue field C, the hypotheses implies that (Λ1 + Λ2)/Λ1 and (Λ1 + Λ2)/Λ2

are C-vector spaces of dimension 1. Then for some h ≥ 2, we can find elements
e, e′ in B+

dR⊗Qp
V and sub-B+

dR-module Λ0 of Λ1, free of rank h−2 such that

Λ1 = B+
dR · e⊕B

+
dR · e

′ ⊕ Λ0, Λ2 = B+
dR · t

−1e⊕B+
dR · te

′ ⊕ Λ0.

One thus has two commutative diagrams: the first one is exact on all rows
and columns

0 0y y
0 −−−−→ V1 −−−−→ X −−−−→ (Λ1 + Λ2)

Λ1
−−−−→ 0

Id

y y y
0 −−−−→ V1 −−−−→ U(−1)⊗Qp

V1 −−−−→ Λ1(−1)/Λ1 −−−−→ 0y y
Λ1(−1)
Λ1 + Λ2

Λ1(−1)
Λ1 + Λ2y y

0 0

the second

0 −−−−→ X −−−−→ U(−1)⊗ V1 −−−−→ Λ1(−1)/(Λ1 + Λ2)y yρ yId

0 −−−−→ (Λ1 + Λ2)/Λ2 −−−−→ Λ1(−1)/Λ2 −−−−→ Λ1(−1)/(Λ1 + Λ2)

is exact on rows.
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We have B2(−1) = Λ1(−1)/Λ1(1). If ε (resp. ε′) denotes the image of t−1e
(resp. t−1e′) in this B2-module, which is then the direct sum of a free rank 2
B2-module of basis {ε, ε′} and the B2-module Λ0 = Λ0(−1)/Λ0(1).

We denote by η : B2(−1)⊗V1 → B2(−1) the map which sends aε+a′ε′+b
to a′t−1 (where a, a′ ∈ B2 and b ∈ Λ0). The image of the restriction ηX of
η on X is contained in C and the diagram above induces the commutative
diagram

0 −−−−→ X −−−−→ U(−1)⊗ V1 −−−−→ Λ1(−1)/(Λ1 + Λ2)yηX

yρ yId

0 −−−−→ C −−−−→ Λ1(−1)/Λ2 −−−−→ Λ1(−1)/(Λ1 + Λ2)

(where C → Λ1(−1)/Λ2 is the map which sends c to ct−1ε′) where the rows
are exact.

One can see that the image X of X in Λ1(−1)/Λ1 = (C ⊗ V1)(−1) is a
C-vector space of dimension 1 contained in the kernel of η. One can also see
that X is the inverse image of X in U(−1) ⊗ V1. One then can apply the
precedent proposition. If η(V1) = η(X) we are in case (1). Otherwise, ηX is
surjective, so is ρ and the kernel of ρ which is equal to the kernel of ηX is of
dimension s over Qp. ut

7.7.3 Recurrence of the Hodge polygon and end of proof.

We are now ready to prove Proposition 3A (resp. 3B), and thus finish the
proof of Theorem A (resp. B).

We say V (resp. ∆ or D) is of dimension (r, h) if V (resp. ∆) is a Qpr -
representation (resp. a (ϕr, N)-module) of dimension h. From now on, we
assume that V (resp. ∆) satisfies tH(V ) = 0 (resp. tH(D) = 0.

We prove Proposition 3A (resp. 3B) by induction on h. Suppose Propo-
sition 3A (resp. 3B) is known for all V ′ (resp. ∆′) of dimension (r′, h′) with
h′ < h and r′ arbitrary, we want to prove it is also true for V (resp. ∆) of
dimension (r, h).

Consider the set of all convex polygons with origin (0, 0) and end point
(hr, 0). The Hodge polygon PH of V (resp. D) is an element of this set. By
Step 1, we know Proposition 3A (resp. 3B) is true if PH is trivial. By induction
to the complexity of PH , we may assume Proposition 3A (resp. 3B) is known
for all V ′ (resp. ∆′) of dimension (r, h) but its Hodge polygon is strictly above
PH(V ) (resp. above PH(D)). By Proposition 2A (resp. 2B), we may assume
V (resp. D) is irreducible.

Recall DK = DdR(V ) (resp. DK = D ⊗K0 K). For V , we let ∆K,m =
D(m)

dR,r(V ). Then in both cases,

DK =
r−1⊕
m=0

∆K,m, FiliDK =
r−1⊕
m=0

FiliDK ∩∆K,m.
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We can choose a basis {δj} of DK such that it is compatible with the filtration
{FiliDK} and the graduation DK =

⊕r−1
m=0∆K,m. To be precise,

- If ij is the largest integer such that δj ∈ Filij DK , then for every i ∈ Z,
FiliDK is the K-vector space with a basis of all δj such that ij ≥ i,

- For every 0 ≤ m ≤ r − 1, ∆K,m is the K-vector space with a basis of all
δj contained in it.

By this way, then hi = dimK Fil
iDK/Fili+1DK is the number of j such that

ij = i, and one has 0 = tH =
∑rh
j=1 ij . Since PH is not trivial, by changing

the order of δj , one can assume that i2 ≥ i1 + 2.
We fix this basis of DK .

Proof of Proposition 3B.

We consider the (ϕr, N)-module ∆′ defined as follows:

- the underlying (ϕr, N)-module structure is the underlying (ϕr, N)-module
structure of ∆;

- since D′K = DK , for the basis {δj : j = 1, · · · , rh} of DK , the filtration is
given as follows,

i′1 = i1 + 1, i′2 = i2 − 1, i′j = ij for j ≥ 2.

Then ∆′ is a filtered (ϕr, N)-module of dimension h. Let D′ be the associated
(ϕ,N)-module. Then tH(D′) = tH(D) − 1 + 1 = tH(D) = 0 and tN (D′) =
tN (D). Moreover, let E′ be a subobject of D′ as (ϕ,N)-module, different
from 0 and D′, then it is identified with a subobject E of D as (ϕ,N)-module,
different from 0 and D. Then one has tN (E′) = tN (E), and tH(E′) = tH(E)+
ε with ε ∈ {−1, 0, 1}. Since D is admissible, tH(E) ≤ tN (E), since D is
irreducible, tH(E) < tN (E) and we have tH(E′) ≤ tN (E′), which implies that
D′ is an admissible (ϕ,N)-module.

Since the Hodge polygon of D′ is strictly above that of D, by induction
hypothesis, we have dimQpr Vst(D′) = h, which means that V ′ = Vst(D′) is
semi-stable and Dst(V ′) = D′. Note that

V0
st(D) = V0

st(D
′) = {x ∈ Bst ⊗K0 D | ϕ(x) = x and Nx = 0}.

Suppose W = BdR ⊗K DK = BdR ⊗K D′K , Λ1 = Fil0(BdR ⊗K D′K) =∑
i∈Z Fil−iBdR ⊗K FiliD′K and Λ2 = Fil0(BdR ⊗K DK). Then V1 = V ′ =

Vst(D′) (resp. V2 = Vst(D)) is the kernel of the composite map

V0
st(D) ⊂ Bst ⊗K0 D ⊂W →W/Λi

for i = 1, 2. V1 is semi-stable of dimension rh, and thus

Λ1 = Fil0(BdR ⊗K D′K) ∼= Fil0(BdR ⊗Qp
V1) = B+

dR ⊗Qp
V1.
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In this case, by Proposition 7.32,

0→ V1 → V0
st(D)→W/Λ1 = V1

st(D)→ 0

is exact. To prove Proposition 3B, it suffices to show that dimQp V2 ≥ rh.
Note that Λ2 is a sub-B+

dR-module of Λ1(−1) and that (Λ1 + Λ2)/Λ1 and
(Λ1 + Λ2)/Λ2 are simple B+

dR-modules. We can apply Proposition 7.43. Note
that U(−1) ⊂ Be. Then U(−1) ⊗Qp

V1 ⊂ V0
st(D) and the kernel of ρ is

contained in V2. Thus it is of finite dimension and its dimension must be rh,
as a result dimQp V2 ≥ rh and Proposition 3B is proved, so is Theorem B. ut

Proof of Proposition 3A.

Lemma 7.44. There exists no GK-equivariant Qp-linear section of B2 to C.

Proof. Suppose V0 is a nontrivial extension of Qp(1) by Qp. We know it exists
and is not de Rham (see Proposition 5.30). Thus dimK DdR(V0) = 1 and
hence DdR(V ∗0 ) = HomQp[GK ](V0, BdR) is also of dimension 1.

If the lemma is false, we can construct two linearly independent map of
Qp[GK ]-module from V0 to BdR and thus induce a contraction. The first
one is the composition V0 → Qp(1) → BdR. For the second one, since
Ext1Qp[GK ](Qp(1), C) = H1

cont(K,C(−1)) = 0 (see Proposition 5.24), we have
an exact sequence HomQp[GK ](V0, C) → HomQp[GK ](Qp, C) → 0, thus the
inclusion Qp → C is extendable to V0 → C. Compose it with the section
C → B2, we get a GK-equivariant Qp-linear map from V0 → B2. Now term
by term, the nullity of H1(K,C(i)) implies that the extension V0 → B2 can
be extended to V0 → B+

dR = lim←−n∈N B
+
dR/FilnB+

dR. It is easy to see the two
maps are independent. ut

Definition 7.45. A B+
dR-representation of GK is a B+

dR-module of finite
type endowed with a linear and continuous action of GK . A morphism of
B+

dR-representations is a GK-equivariant B+
dR-map. The category of all B+

dR-
representations is denoted as RepB+

dR
(GK), which is an abelian category.

A B+
dR-representation is called Hodge-Tate if it is a direct sum of B+

dR-
representations of the form Bm(i) = FiliBdR/Fili+mB+

dR = (BdR/t
mB+

dR)(i)
for m ∈ N− {0} and i ∈ Z.

Remark 7.46. (1) The category RepB+
dR

(GK) is artinian. Bm(i) is an inde-
composable object in this category.

(2) The subobjects and quotients of a Hodge-Tate B+
dR-representation is

still Hodge-Tate.

Lemma 7.47. Suppose

0→W ′ →W →W ′′ → 0

is an exact sequence of Hodge-Tate B+
dR-representations. For this sequence

to be split, it is necessary and sufficient that there exists a GK-equivariant
Qp-linear section of the projection of W to W ′′.
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Proof. The condition is obviously necessary. We now prove that it is also
sufficient. We can find a decomposition of W =

⊕t
n=1Wn as a direct sum

of indecomposable Bm(i)’s, such that W ′n = W ′ ∩Wn and W ′ =
⊕t

n=1W
′
n,

then W ′′ is a direct sum of Wn/W
′
n. By this decomposition, we can assume

t = 1. It suffices to prove that for r, s, i ∈ Z with r, s ≥ 1, there exists no
GK-equivariant section of the projection Br+s(i) to Br(i). If not, the section
Br(i)→ Br+s(i) induces a GK-equivariant map

C(i+ r − 1) =
ti+r−1B+

dR

ti+rB+
dR

→
ti+r−1B+

dR

ti+r+sB+
dR

→
ti+r−1B+

dR

ti+r+1B+
dR

= B2(i+ r − 1)

which is a section of the projection B2(i+ r− 1) to C(i+ r− 1). By tensoring
Zp(1 − r − i), we get a GK-equivariant Qp-linear section of B2 to C, which
contradicts the precedent lemma. ut

We now apply Proposition 7.43 with V1 = V . Since V is de Rham, we let
Λ1 = B+

dR⊗Qp
V = Fil0(BdR⊗K DK). This is a free B+

dR-module with a basis
{ej = t−ij ⊗ δj | 1 ≤ j ≤ rh}. Suppose

e′1 = t−1e1, e
′
2 = te2, and e′j = ej for all 3 ≤ j ≤ rh.

The sub-B+
dR-module Λ2 of Λ1(−1) with basis e′j satisfies the hypothe-

ses of Proposition 7.43. With notations of that proposition, the quotient
(Λ1 + Λ2)/Λ1 is a C-vector space of dimension 1 generated by the image of
e′1 = t−i1−1 ⊗ δ1 and is isomorphic to C(−i1 − 1). One has an exact sequence

0→ V → X → C(−i1 − 1)→ 0. (7.14)

This sequence does not admit a GK-equivariant Qp-linear section. In fact, one
has an injection X → U(−1) ⊗ V → B2(−1) ⊗ V = Λ1(−1)/Λ1(1). The last
one is a free B2-module of basis bj the image of t−ij−1 ⊗ δj . The factor with
basis b1 is isomorphic to B2(−i1−1) and the projection parallel to this factor
induces a GK-equivariant commutative diagram

0 −−−−→ V −−−−→ X −−−−→ C(−i1 − 1) −−−−→ 0y y Id

y
0 −−−−→ C(−i1) −−−−→ B2(−i1 − 1) −−−−→ C(−i1 − 1) −−−−→ 0

whose rows are exact. If the sequence at the top splits, so is the one at the
bottom, which contradicts Lemma 7.44.

Note that V = V1 is not contained in the kernel of ρ: otherwise V is
contained in Λ2, and it is also contained in the sub-B+

dR-module of Λ1(−1)
generated by V1 which is Λ1, this is not the case.

Since the map ρ is GK-equivariant and since V is irreducible, the restric-
tion of ρ at V is injective. We have ρ(V ) 6= ρ(X) (otherwise, X = V ⊕Ker ρ,
contradiction to that (7.14) is not split). Therefore dimQp ρ(X) > rh. By
Proposition 7.43, ρ is surjective and its kernel V2 is of dimension rh over Qp.
We can see that V2 is actually a Qpr -representation of dimension h.
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Lemma 7.48. The B+
dR-linear map B+

dR⊗Qp
V2 → Λ2 induced by the inclusion

V2 → Λ2 is an isomorphism.

Proof. Since both B+
dR ⊗ V2 and Λ are free B+

dR-modules of the same rank, it
suffices to show that the map is surjective. By Nakayama Lemma, it suffice to
show that, if let ΛV2 be the sub-B+

dR-module of Λ2 generated by V2 and tΛ2,
then ΛV2 = Λ2.

By composing the inclusion of U(−1) ⊗ V to Λ1(−1) with the projection
of Λ1(−1) to Λ1(−1)/ΛV2 , we obtain the following commutative diagram

0 −−−−→ V2 −−−−→ U(−1)⊗ V −−−−→ Λ1(−1)/Λ2 −−−−→ 0

0

y y yId

0 −−−−→ Λ2/ΛV2 −−−−→ Λ1(−1)/ΛV2 −−−−→ Λ1(−1)/Λ2 −−−−→ 0

with the two rows are exact, which implies that there exists a Qp-linear
GK-equivariant section of the last row. Since Λ1(−1)/ΛV2 , as a quotient of
Λ1(−1)/Λ2(1), is a Hodge-Tate B+

dR-representation, by the previous lemma,
the last row exact sequence splits as B+

dR-modules.
If, for 1 ≤ j ≤ rh, let uj (resp. uj) denote the image of t−ij−1 ⊗ δj

in Λ1(−1)/ΛV2 (resp. Λ1(−1)/Λ2), then u1 = 0, tuj = 0 for j ≥ 3, and
Λ1(−1)/Λ2 is the direct sum of free B2-module of basis u2 and C-vector
space of basis uj for j ≥ 3. Since Λ2/ΛV2 is killed by t, one then deduces that
t2u2 = t2(u2 − u2) = 0 and tuj = 0 for j ≤ 3, then t−i2+1 ⊗ δ2 and t−ij ⊗ δj
for j ≥ 3 are contained in ΛV2 . Hence ΛV2 contains the sub-B+

dR-module
generated by those elements and t−i1⊗δ1, which is nothing but Λ1∩Λ2. Since
Λ2/(Λ1 ∩Λ2) is a simple B+

dR-module, it suffices to show that ΛV2 6= Λ1 ∩Λ2,
or V2 is not contained in Λ1. This follows from (U(−1) ⊗ V ) ∩ Λ1 = V and
V ∩ V2 = 0 since the restriction of ρ at V is injective. ut

By inverting t, from the above lemma, we have an isomorphism of BdR⊗Qp

V2 to BdR ⊗Qp
V which is GK-equivariant. We thus have an isomorphism

D′K = DdR(V2) to DK = DdR(V ) and hence V2 is a de Rham representation.
Write i′1 = i1 +1, i′2 = i2− 1, and i′j = ij for 3 ≤ j ≤ rh. By B+

dR⊗Qp V = Λ1

and B+
dR ⊗Qp

V2 = Λ2, for every i ∈ Z, we have

FiliDK =
⊕
ij≥i

Kδj , and FiliD′K =
⊕
i′j≥i

Kδj .

It follows that the Hodge polygon of V2 is strictly above that of V . The
inductive hypothesis then implies that V2 is potentially semi-stable. Replace
K by a finite extension, we can assume that V2 is semi-stable.

We can identify V and V2 as Qp-subspaces of BdR-vector space W =
BdR ⊗Qp V . Suppose A ∈ GLrh(BdR) is the transition matrix from a chosen
basis of V2 over Qp to a chosen basis of V over Qp. Since tH(V ) = tH(V2) = 0,
the determinant of A is a unit in B+

dR. Since V2 ⊂ U(−1)⊗V , the matrix A is of
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coefficients in U(−1). Since U(−1) ⊂ Be andBe∩B+
dR = Qp, detA is a nonzero

element in Qp and hence A is invertible. Thus the inclusion of V2 ⊂ U(−1)⊗V
induces an isomorphism of Be ⊗ V2 to Be ⊗ V , hence a fortiori of Bst ⊗ V2

to Bst ⊗ V . By taking the GK-invariant, we get an isomorphism of Dst(V2)
to Dst(V ). Since V2 is semi-stable, then dimK0 Dst(V ) = rh = dimQp(V )
and V is also semi-stable. This completes the proof of Proposition 3A and
consequently of Theorem A. ut
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320 (2001), 307–337.

[HK94] O. Hyodo and K. Kato, Semi-stable reduction and crystalline cohomology
with logarithmic poles, Périodes p-adiques, Astérisque, vol. 223, Soc. Math.
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Astérisque, vol. 223, Soc. Math. France, 1994, Papers from the seminar
held in Bures-sur-Yvette, 1988, pp. 9–57.

[Ill03] , Grothendieck’s existence theorem in formal geometry, 2003.
[Ill04] , Algebraic geometry, 2004, Lecture Notes in Spring 2004, Tsinghua

University, Beijing, China.
[IR83] L. Illusie and M. Raynaud, Les suites spectrales associées au complexs de

de Rham-Witt, Publ. Math. IHES 57 (1983), 73–212.
[Jan88] U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2,

207–245.
[Jan89] , On the `-adic cohomology of varieties over number fields and its

Galois cohomology, Math. Sci. Res. Inst. Publ. 16 (1989), 315–360.
[Kat86] K. Kato, On p-adic vanishing cycles, (Applications of ideas of Fontaine-

Messing), Advanced Studies in Pure Math. 10 (1986), 207–251.
[Kat88] , Logarithmic structures of Fontaine-Illusie, Algebraic Analysis,

Geometry and Number Theory, The John Hopkins Univ. Press, 1988,
pp. 191–224.

[Kat93a] , Iwasawa theory and p-adic Hodge theory, Kodai Math. J. 16
(1993), no. 1, 1–31.

[Kat93b] , Lectures on the approach to Iwasawa theory for Hasse-Weil L-
functions via bdr, Arithmetic Algebraic Geometry (Trento, 1991), vol.
1553, Springer, Berlin, 1993, pp. 50–163.

[Kat93c] , Lectures on the approach to Iwasawa theory for Hasse-Weil L-
functions via bdr, part II, preprint (1993).

[Kat94] , Semi-stable reduction and p-adic étale cohomology, Périodes p-
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bres, Paris, 1990–91, Prog. Math, vol. 108, Birkhäuser Boston, MA, 1993,
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