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0

Preliminary

0.1 Inverse limits and Galois theory

0.1.1 Inverse limits.

In this subsection, we always assume that <7 is a category with infinite prod-
ucts. In particular, one can let &7 be the category of sets, of (topological)
groups, of (topological) rings, of left (topological) modules over a ring A. Re-
call that a partially ordered set I is called a directed set if for any i,j € I,
there exists k € I such that ¢ <k and j < k.

Definition 0.1. Let I be a directed set. Let (A;)ier be a family of objects
in 7. This family is called an inverse system(or a projective system) of o
over the index set I if for every pair ¢ < j € I, there exists a morphism
wji + Aj — Ay such that the following two conditions are satisfied:

(1) i = 1d;

(2) For every i < j <k, Qri = ©jiPhj-

Definition 0.2. The inverse limit (or projective limit) of a given inverse sys-
tem Aq = (A;)icr is defined to be an object A in of
A=1lmA; = {(ai) € HAi : pjila;) = a; for every pairi < j}7
el iel

such that the natural projection p; : A — A;, a = (a;)jer — a; is a morphism
for each i€ I.

Remark 0.8. One doesn’t need the set I to be a directed set but only to be
a partially ordered set to define an inverse system. For example, let I be a
set with trivial ordering, i.e. i < j if and only if i = j, then lim A; = [] A,.
il i€l
However, this condition is usually satisfied and often needed in application.
By the inverse system condition, one can see immediately ¢; = @;;¢; for
every pair i < j. Actually, A is the solution of the universal problem:
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Proposition 0.4. Let (A4;) be an inverse system in o, A be its inverse limit
and B be an object in <. If there exist morphisms f; : B — A; for all
i € I such that for every pair i < j, fi = @ji0 f;, then there exists a unique
morphism f: B — A such that f; = pjo f.

Proof. This is an easy exercise. a

By definition, if o is the category of topological spaces, i.e., if X; is a
topological space for every ¢ € I and ¢;;’s are continuous maps, then X =
@Xi is a topological space equipped with a natural topology, the weakest
il
topology such that all the ¢;’s are continuous. Recall that the product topology
of the topological space [ X; is the weakest topology such that the projection

il
pr; : [I Xi — Xj is continuous for every j € I. Thus the natural topology
i€l
of X is the topology induced as a closed subset of [[ X; with the product
i€l
topology.

For example, if each X; is endowed with the discrete topology, then X is
endowed with the topology of the inverse limit of discrete topological spaces.
In particular, if each X is a finite set endowed with discrete topology, then
we will get a profinite set (inverse limit of finite sets). In this case, since
lim X; C l;IIXi is closed, and since _];IIXi, as the product space of compact

1 1
spaces, is still compact, liLﬂXi is compact too. In this case one can see that
liLnXi is also totally disconnected.

If moreover, each X is a (topological) group and if the ¢;;’s are (continu-
ous) homomorphisms of groups, then 1&11 X, is a group with ¢; : liinj X;— X;
a (continuous) homomorphism of groups.

If the X;’s are finite groups endowed with discrete topology, the inverse
limit in this case is a profinite group. Thus a profinite group is always compact
and totally disconnected. As a consequence, all open subgroups of a profinite
group are closed, and a closed subgroup is open if and only if it is of finite
index.

Ezample 0.5. (1) For the set of positive integers N*| we define an ordering
n < m if n | m. For the inverse system (Z/nZ)nen- of finite rings where the
transition map @, is the natural projection, the inverse limit is

7 = lim Z/nZ
P
neN*

(2) Let ¢ be a prime number, for the sub-index set {¢™ : n € N} of N*,

Zy = lim Z/("7,
neN
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is the ring of ¢-adic integers. The ring Z; is a complete discrete valuation ring
with the maximal ideal generated by ¢, the residue field Z/¢Z = F;, and the
fraction field
1 >
Qe = Ze {g] = mLJoé "L

being the field of /-adic numbers.

If N >1,let N = {7"45?---£;" be its primary factorization. Then the
isomorphism

h
Z/NZ~ || z/¢; 7
1=1

induces an isomorphism of topological rings

Z >~ H Zg.

¢ prime number

0.1.2 Galois theory.

Let K be a field and L be a (finite or infinite) Galois extension of K. The
Galois group Gal(L/K) is the group of the K-automorphisms of L, i.e.,

Gal(L/K)={g: L= L, g(y) =~ forall y € K}.

Denote by £ the set of finite Galois extensions of K contained in L and
order this set by inclusion, then for any pair E, F € £, one has FF € £ and

E,F C EF, thus £ is in fact a directed set and L = |J FE. As a result, we
Ec€
can study the inverse limits of objects over this directed set. For the Galois

groups, by definition,

v = (ve) € lim Gal(E£/K) if and only if (yr)|p = yg for E C F € €.
Eec¢&

Galois theory tells us that the following restriction map is an isomorphism

Gal(L/K) — lim Gal(E/K)
Eec&
g — (g9|g) : g|g the restriction of g in E.

From now on, we identify the two groups through the above isomorphism. Put
the topology of the inverse limit with the discrete topology on each Gal(F/K),
the group G = Gal(L/K) is then a profinite group, endowed with a compact
and totally disconnected topology, which is called the Krull topology. We have

Theorem 0.6 (Fundamental Theorem of Galois Theory). There is a
one-one correspondence between intermediate field extensions K ¢ K' C L
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and closed subgroups H of Gal(L/K) given by K' — Gal(L/K') and H — L
where L = {x € L | g(z) = z for all g € H} is the invariant field of H.
Moreover, the above correspondence gives one-one correspondences between
finite extensions (resp. finite Galois extensions, Galois extensions) of K con-
tained in L and open subgroups (resp. open normal subgroups, closed normal

subgroups) of Gal(L/K).

Remark 0.7. (1) Given an element g and a sequence (g, )nen of Gal(L/K),
the sequence (g, )nen converges to g if and only if for all E € £, there exists
ng € N such that if n > ng, then g,|g = g|p.

(2) The open normal subgroups of G are the groups Gal(L/FE) for E € &,
and there is an exact sequence

1— Gal(L/E)— Gal(L/K)— Gal(E/K) — 1.

(3) A subgroup of G is open if and only if it contains an open normal
subgroup. A subset X of G is an open set if and only if for all x € X, there
exists an open normal subgroup H, such that 2H, € X.

(4) If H is a subgroup of Gal(L/K), then L¥ = L¥ with H being the
closure of H in Gal(L/K).

We first give an easy example:

Ezample 0.8. Let K be a finite field with ¢ elements, and let K be an algebraic
closure of K with Galois group G = Gal(K/K).

For each n € N, n > 1, there exists a unique extension K, of degree
n of K contained in K*. The extension K, /K is cyclic with Galois group
Gal(K,,/K) ~ Z/nZ = (p,) where ¢, = (z — x7) is the arithmetic Frobenius
of Gal(K,,/K). We have the following diagram

G ——— lim Gal(K, /K)
—

5 i

~

7Z ———  limZ/nZ.
P

Thus the Galois group G ~ Z is topologically generated by ¢ € G: p(z) = a?
for z € K*, i.e., with obvious conventions, any elements of G' can be written
uniquely as ¢ = ¢® with a € Z. The element ¢ is called the arithmetic
Frobenius and its inverse ¢! is called the geometric Frobenius of G.

If K =F,, the arithmetic Frobenius (z +— aP) is called the absolute Frobe-
nius and denoted as 0. Moreover, for any field & of characteristic p, we call the
endomorphism o : x — xP the absolute Frobenius of k. o is an automorphism
if and only if k is perfect.

In the case K = Q, let Q be an algebraic closure of Q, and let Gg =
Gal(Q/Q).
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The structure of Gg is far from being completely understood. An open
question is: Let J be a finite groups. Is it true that there exists a finite Galois
extension of Q whose Galois group is isomorphic to J? There are cases where
the answer is known(eg. J is abelian, J = S,,, J = A,, etc).

For each place p of Q (i.e., a prime number or oo), let @p be a chosen
algebraic closure of the p-adic completion Q, of Q (for p = oo, we let Q, =R
and Q, = C). Choose for each p an embedding o, : Q — Q,. From the
diagram

Q—Q

[

one can identify G), = Gal(@p/@p) to a closed subgroup of Gg, called the
decomposition subgroup of G at p. To study G, it is necessary and important
to know properties about each G,.

This phenomenon is not unique. There is a generalization of the above
to number fields, i.e., a finite extension of QQ, whose completions are finite
extensions of Q,. There is also an analogue for global function fields, i.e.,
finite extensions of k(x) with k a finite field, whose completions are of the
type k' ((y)), where k' is a finite extension of k. As a consequence, we are led
to study the properties of local fields.

0.2 Witt vectors and complete discrete valuation rings

0.2.1 Nonarchimedean fields and local fields.
First let us recall the definition of valuation.

Definition 0.9. Let A be a ring. If v: A — RU{+o0} is a function such that
(1) v(a) = 400 if and only if a =0,
(2) v(ab) = v(a) + v(b),
(8) v(a+b) > min{v(a),v(b)},
and if there exists a € A such that v(a) ¢ {0,400}, then v is called a (non-
trivial) valuation on A. If v(A) is a discrete subset of R, v is called a discrete
valuation.

The above definition of valuation is usually called a valuation of height 1.

For a ring A with a valuation v, one can always define a topology to A
with a neighborhood basis of 0 given by {z : v(z) > n}, then A becomes a
topological ring. The valuation v on A defines an absolute value: |a| = e V(@)
For any a € A, then

a is small < |a| is small < v(a) is big.
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If v1 and vy are valuations on A, then v, and vy are equivalent if there exists
r € R, r > 0, such that va(a) = rv1(a) for any a € A. Thus v; and vg are
equivalent if and only if the induced topologies in A are equivalent.

If A is a ring with a valuation v, then A is always a domain: if ab = 0 but
b # 0, then v(b) < +o0 and v(a) = v(ab) — v(b) = 400, hence a = 0. Let
K be the fraction field of A, we may extend the valuation to K by v(a/b) =
v(a) — v(b). Then the ring of valuations (often called the ring of integers)

Ok ={a € K |v(a) >0} (0.1)
is a local ring, with the maximal ideal mg given by

mg = {a € K | v(a) > 0}, (0.2)
and kx = Ok /mg being the residue field.
Definition 0.10. A field K with a valuation v is called a valuation field.

A valuation field is nonarchimedean: the absolute value | | defines a metric
on K, which is ultrametric, since |a 4+ b| < max(|al,|b]). Let K denote the
completion of K of the valuation v. Choose m € Ok, m # 0, and v(m) > 0, let

O = lim Oy /(™).
Then O is again a domain and K= Ox1/7].

Remark 0.11. The ring O does not depend on the choice of 7. Indeed, if
v(r) =r >0, v(r") = s >0, for any n € N, there exists m,, € N, such that
M € 7Ok, so

lim O /(7™) > lim O /(x").

Definition 0.12. A field complete with respect to a valuation v is called a
complete nonarchimedean field.

We quote the following well-known result of valuation theory:

Proposition 0.13. If F' is a complete nonarchimedean field with a valuation
v, and F' is any algebraic extension of F, then there is a unique valuation v’
on F' such that v'(x) = v(x), for any x € F. Moreover, F' is complete if and
only if F'/F is finite. If a,’ € F' are conjugate, then v(a) = v(a’).

Remark 0.14. By abuse of notations, we will set the extended valuation v/ = v.

Let F be a complete field with respect to a discrete valuation, let F’ be
any algebraic extension of F. We denote by vg the unique valuation of F’
extending the given valuation of F' such that vp(F*) = Z. vp is called the
normalized valuation of F.

If F is a field with a valuation, for any a € mg, a # 0, let v, denote the
unique valuation of F' equivalent to the given valuation such that v,(a) = 1.
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Definition 0.15. A local field is a complete discrete valuation field whose
residue field is perfect of characteristic p > 0. Thus a local field is always a
complete nonarchimedean field.

A p-adic field is a local field of characteristic 0.

Ezample 0.16. A finite extension of Q, is a p-adic field. In fact, it is the only
p-adic field whose residue field is finite.

Let K be a local field with the normalized valuation and perfect residue
field k, chark = p > 0. Let @ be a uniformizing parameter of K. Then
vi(m) =1 and mg = (7). One has an isomorphism

Ox < lim O /mfy = lim O ("),
n n
the topology defined by the valuation for Ok is the same as the topology of
the inverse limit with the discrete topology in each O /m%. Thus we have
the following propositions:

Proposition 0.17. The local field K is locally compact (equivalently, O is
compact) if and only if the residue field k is finite.

Proposition 0.18. Let S be a set of representatives of k in Ok . Then every
element © € Ok can be uniquely written as

T = Z syt (0.3)
i>0
s; €S

and z € K can be uniquely written as

x = Z syt (0.4)

i>—n
;€S
As p € mg, by the binomial theorem, for a,b € Ok, we have the following
fact: ’
a=bmodmyg = " =b modm}j for n > 0. (0.5)

Proposition 0.19. For the natural map O — k, there is a natural section
r: k — Og which is unique and multiplicative.

Proof. Let a € k. For any n € N, there exists a unique a,, € k such that
a?’ = a, ay | = an. Let @, be a lifting of a,, in Ok.

n

n+1

By (0.5), @, = @, modmg implies that >, =@k modm/"". There-

fore r(a) := lim @2 exists. By (0.5) again, r(a) is found to be independent
n—oo

of the choice of the liftings of the @,,’s. It is easy to check that r is a section of

p and is multiplicative. Moreover, if ¢ is another section, we can always choose
an = t(ay), then

r(a) = lim @2 = lim t(a,)? = t(a),

n—oo n—oo

hence the uniqueness follows. a
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Remark 0.20. This element r(a) is usually called the Teichmiiller representa-
tive of a, often denoted as [a].

If char(K) = p, then r(a + b) = r(a) + r(b) since (a, +Zn)pn =ar" +3’T’Ln.
Thus r : k — Og is a homomorphism of rings. We can use it to identify k
with a subfield of O . Then

Theorem 0.21. If Ok is a complete discrete valuation ring, k is its residue
field and K is its quotient field. Let m be a uniformizing parameter of Ok.
Suppose that Ok (or K) and k have the same characteristic, then

Ok = k([]], K = k((m)).

Proof. We only need to show the case that char(k) = 0. In this case, the
composite homomorphism Z — Ok — k is injective and the homomorphism
7Z — Ok extends to Q, hence Ok contains a field Q. By Zorn’s lemma, there
exists a maximal subfield of Ox. We denote it by S. Let S be its image in k.
We have an isomorphism S — S. It suffices to show that S = k.

First we show k is algebraic over S. If not, there exists a € Ok whose
image a € k is transcendental over S. The subring S[a] maps to S[a], hence is
isomorphic to S[X], and S[a] "Nmg = 0. Therefore Ok contains the field S(a)
of rational functions of a, contradiction to the maximality of S.

Now for any a € k, let f(X) be the minimal polynomial of S(a) over S.
Since char(k) = 0, f is separable and « is a simple root of f. Let f € S[X] be
a lifting of f. By Hensel’s Lemma, there exists # € O, f(z) =0 and Z = a.
One can lift S[a] to S[z] by sending a to S. By the maximality of S, x € S.

and thus k= S. O
If K is a p-adic field, char(K) = 0, then r(a + b) # r(a) + r(b) in general.
Witt vectors are useful to describe this situation.

0.2.2 Witt vectors.

Let p be a prime number, A be a commutative ring. Let X, Y; (¢ € N) be
indeterminates and let

A[XvX]ZA[X()aXla"' 7Xn7"' ;}/b?Ylv"' aan"']'

Lemma 0.22. For all & € Z[X,Y], there exists a unique sequence {®, }nen
in Z|X,Y] such that
p'n, pn —1 n pn p'n, —1 n
Xy +pX{ +---+0" X, Yy +Y] +--4+p"Y,)

. o (0.6)
=(Po(X,Y))" +p (91(X,Y))"  +-- +p" D, (X,Y).

Moreover,
@n S Z[X07X17 T 7Xn;}/baY17 e aYn]
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Proof. First we work in Z[%][K, Y]. Set $¢(X,Y) = &(Xy,Ys) and define &,
inductively by

n . n . n—1 .
@n(l,K) = }% (@(Zplenl7zpz}/;Pnl) _ sz¢Z<X7Y)pnl> .
i=0 i=0

=0

Clearly @,, exists, is unique in Z[%][&, Y], and isin Z[%][Xo, s, X Yo, Y0
We only need to prove that @,, has coefficients in Z.

This is done by induction on n. For n = 0, @y certainly has coefficients
in Z. Assuming @; has coefficients in Z for ¢ < n, to show that &,.; has

coefficients in Z, we need to prove that

@(Xgn R +ann; prn et p”Yn)
=0 (X, Y)"" +p® (X, Y)P" + - +p" b, (X, Y)P modp".

One can verify that

LHS=®(XE" + - +p" 'X?_ Y 4+ +p"'Y”_ ) modp”

n—17

= Bo(XP,YP)P" 4 pdy (X2, YPYP 4 p B, 1 (XP,YP) mod p.

By induction, &;(X,Y) € Z[X,Y], hence &;(X?,Y?) = ($;(X,Y))” mod p,
and _ L _ By
p'ey(XP YR =p - 0(X,Y)P modp”.

Putting all these congruences together, we get the lemma. a

Remark 0.23. The polynomials W,, = > pinnii (n € N) are called the Witt
i=0

polynomials for the sequence (Xo,- -+, Xy, -+). One can easily see that X,, €
Zlp~Y[Wa, -+, W,] for each n.

Forn > 1, let W, (A) = A™ as a set. Applying the above lemma, if & = X+
Y, we set S; € Z[Xo, X1, -+, X;; Yo, Y1, -+, Y] to be the corresponding &;; if
& =XY weset P, € Z[Xo, X1, -, X;; Y0, Y7, , Y;] to be the corresponding
P;.
For two elements a = (ag, a1, ,an-1),0 = (bo, b1, ,bn_1) € W,(A),
put
a+b=(s0,81," " ,50-1), @-b=(po,p1,""*Pn-1),

where
s; = Si(ag,a1,--- ,as;b0,b1,-++ ,0;), pi = Pi(ag,a1,--- ,as;bo,b1,--- ,b;).
Remark 0.24. 1t is clear that

So = Xo + Yo, FPo=XoYo. (0.7)
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From (X() —|—Y0)p—|-p5'1 = Xg +p X, +Y0p +pYi, we get

p—1
1(p i —i
51:X1+Y1—Zp<i)XOYOP . (0.8)

i=1

Also from (X! +pX1) Y¥ +pY1) = XE Y + p Pr, we get
P1:X1YOP+X5Y1 +pX1Y1 (09)

But for general n, it is too complicated to write down S,, and P,, explicitly.

Consider the map

Wo(A) L an
(a())a/l) e 7an71) | — (wOaw17 e 7wn71)
where w; = W;(a) = agi era]l”F1 + -+ p'a;. Then
wi(a+b) = w;(a) + w;(b) and w;(ab) = w;(a) w; (D).

We notice the following facts:

(1) If p is invertible in A, p is bijective and therefore W, (A) is a ring
isomorphic to A™.

(2) If A has no p-torsion, by the injection A — A[%], then W, (A) C
Wn(A[%]) Thus W, (A) is a subring with the identity 1 = (1,0,0,---), as
a,b € W,(A) implies that a — b € W,,(A4), when applying Lemma 0.22 to
P=X-Y.

(3) In general, any commutative ring can be written as A = R/I with R
having no p-torsion. Then W,,(R) is a ring, and

Wn(I) :{(aoaala"' ,Cln) | Q; GI}

is an ideal of W, (R). Then W, (R/I) is the quotient of W, (R) by W, (I),
again a ring itself.

For the sequence of rings W,,(A), consider the maps
Wit1(A) — Wi(A)
(ag, a1, ,an) — (ao, a1, - ,an—1).
This is a surjective homomorphism of rings for each n. Define

W(A) = lim W, (A).
neN*

Put the topology of the inverse limit with the discrete topology on each
W, (A), then W(A) can be viewed as a topological ring. An element in W (A)
is written as (ag, a1, - ,a;, ).
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Definition 0.25. The ring W,,(A) is called the ring of Witt vectors of length
n of A, an element of it is called a Witt vector of length n.

The ring W (A) is called the ring of Witt vectors of A (of infinite length),
an element of it is called a Witt vector.

By construction, W (A) as a set is isomorphic to AYN. For two Witt vectors
a = (ap,a1, -+ ,ap, ), b = (bo,b1, -+ ,bn, ) € W(A), the addition and
multiplication laws are given by

a+b:(50a317"' 7STL7"')7 a'b:(p07p17"' apna"')'
The map
p:W(A)-)AN7 (a07a15"' aanv"')'_)(w()vwh"' 7wn7"')

is a homomorphism of commutative rings and p is an isomorphism if p is
invertible in A.

Ezxample 0.26. One has W (Fp) = Z,,.

W, and W are actually functorial: let h : A — B be a ring homomor-
phism, then we get the ring homomorphisms

Wh(h) : W,(A) — W, (B)
(a0>a17 T ’anfl) — (h(a0)>h(a1)7 o >h(an*1))

for n > 1 and similarly the homomorphism W (h) : W(A) — W(A).
Remark 0.27. In fact, W, is represented by an affine group scheme over Z:
W,, = Spec(B), where B =Z[Xo, X1, -+ , Xn-1].
with the comultiplication
m*:B— B®zB~7Z[Xo, X1, -, Xn-1;Y0, Y1, -, Yn_1]
given by
Xi— X;®1l, YVi—1®X;, m'X,=5(XoX1, ,X;Y, Y1, -, Y5).
Remark 0.28. If A is killed by p, then
Wo(A) 25 A ‘

(ap, a1, ,apn_1) — agl.

So p is given by
W,(A) £ An
(ag,a1, -+ ,an_1) — (ag,al, - ,agnil).

In this case p certainly is not an isomorphism. Similarly p : W(A) — AN is
not an isomorphism either.
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Maps related to the ring of Witt vectors.

Let A be a commutative ring. We can define the following maps v, r and ¢
related to W(A).

(1) The shift map v.
We define

VW(A)HW(A)7 (a0,~--,an,-~-)H(O,a0,~-~ 7an7"')a

which is called the shift map. It is additive: it suffices to verify this fact when
p is invertible in A, and in that case the homomorphism p : W(A) — AN
transforms v into the map which sends (wg, w1, - ) to (0, pwg, - - ).

By passage to the quotient, one deduces from v an additive map of W,,(A)
into W,,+1(A). There are exact sequences

0 — Wi(A) 25 Wi (A) — Wi (A) — 0. (0.10)

(2) The Teichmiiller map .
We define a map

r:A—W(A), zw— [z]=(z,0,---,0,---).

When p is invertible in A, p transforms r into the mapping that sends x to

(z,zP,--- ,xP",-..). One deduces by the same reasoning as in (1) the following
formulas:
r(zy) = r(x)r(y), z,y€ A (0.11)
(ag,a1,-++) = i v (r(ay)), a; € A (0.12)
n=0
(@) (ag, ) = (vag, 2Par, - ,a? an,---), z,a; € A. (0.13)

(3) The Frobenius map .
Suppose k is a ring of characteristic p. The homomorphism

k—k, x—2aP
induces a ring homomorphism:
P W(k) - W(k), (a07a17 o ) = (agva:lf? e )7

which is called the Frobenius map. If moreover, k is a perfect field, the Frobe-
nius on W (k) is often denoted as o.
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0.2.3 Structure of complete discrete valuation rings with unequal
characteristic.

As an application of Witt vectors, we discuss the structure of complete dis-
crete valuation rings in the unequal characteristic case. The exposition in this
subsection follows entirely that in Serre [Ser80], Chap. II, §5.

Definition 0.29. We say that a ming A of characteristic p is perfect if the
endomorphism x — xP of A is an autlomorphism, i.e., every element of v € A
has a unique p-th root, denoted xP . When A is a field, this is the usual
definition of a perfect field.

Definition 0.30. If A is a ring which is Hausdorff and complete for a de-
creasing filtration of ideals a3 D ag--- such that a,, - a, C Apyn, and if the
ring A/ay is perfect of characteristic p, then A is called a p-ring. If further-
more the filtration is the p-adic filtration {p™A}nen, with the residue ring
k = A/pA perfect, and if p is not a zero-divisor in A, then A is called a strict
p-ring.

Proposition 0.31. Let A be a p-ring, then:

(1) There exists one and only one system of representatives f : k — A
which commutes with p-th powers: f(A\P) = f(A)P.

(2) In order that a € A belong to S = f(k), it is necessary and sufficient
that a be a p™-th power for all n > 0.

(8) This system of representatives is multiplicative, i.e., one has f(Au) =

FONF(u) for all A i € .
(4) If A has characteristic p, this system of representatives is additive,

it OV p) = F(A) + f(p)-

Proof. The proof is very similar to the proof of Proposition 0.19. We leave it
as an exercise. O

Proposition 0.31 implies that when A is a p-ring, it always has the sys-
tem of multiplicative representatives f : A/a; — A, and for every sequence
QQ, -+, Qp, -+, of elements of A/ay, the series

> flea' (0.14)
=0

converges to an element a € A. If furthermore A is a strict p-ring, every
element a € A can be uniquely expressed in the form of a series of type

i x —i .
(0.14). Let 3; = o , then a = zjof(ﬁf )p*. We call {8;} the coordinates of
1=
a.

Ezxample 0.32. Let X, be a family of indeterminates, and let S be the ring

of p~*®-polynomials in the X, with integer coefficients, i.e., S = |J Z[X2 "]
n>0
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If one provides S with the p-adic filtration {p™S},>0 and completes it, one

obtains a strict p-ring that will be denoted S = Z[XZ ~]. The residue ring
S/pS = Fp[ngw} is perfect of characteristic p. Since X, admits p”-th roots
for all n, we identify X, in S with its residue ring.

Suppose Xg, -+, Xy, - and Yy, .-+, Y,, - are indeterminates in the ring

ZIXP 7, YP 7). Consider the two elements

0 . e .
r=>Y Xip', y=)Y Yip'
=0 =0

If % is one of the operations +, X, —, then = * y is also an element in the ring
and can be written uniquely of the form

o0
zry =Y f@Q)p, with Qf €Fp[XP VP "]
i=0
As @)} are p~°°-polynomials with coefficients in the prime field F,, one can

evaluate it in a perfect ring k of characteristic p. More precisely,

Proposition 0.33. If A is a p-ring with residue ring k and f : k — A is the
system of multiplicative representatives of A. Suppose {a;} and {3;} are two
sequences of elements in k. Then

D fla)p' =Y FBP =D '
=0 =0 1=0

with Vi = Q;((O{Ovalv e ;ﬂ(%ﬁla o )
Proof. One sees immediately that there is a homomorphism
0:7Z[XP T YP T]— A

which sends X; to f(«;) and Y; to f(6;). This homomorphism extends by

continuity to Z[X? ", Y 7] — A, which sends z = - X;p’ toa = 3 f(ai)p'
and y = > Y;p' to B = > f(B;)p’. Again 6 induces, on the residue rings, a

1
homomorphism 6 : F,, [Xipioo,Yipioo] — k which sends X; to «; and Y; to ;.
Since # commutes with the multiplicative representatives, one thus has

Z f(ai)pi * Z f(ﬁz)pl =0(z) * 0(y) = 0(x = y)
=SC0r@0)' =3 FO@Q)P

—oo

this completes the proof of the proposition, as 6(Q}

?

) is nothing but ;. O
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Definition 0.34. Let A be a complete discrete valuation ring, with residue
field k. Suppose A has characteristic 0 and k has characteristic p > 0. The
integer e = v(p) is called the absolute ramification index of A. A is called
absolutely unramified if e = 1, i.e., if p is a local uniformizer of A.

Remark 0.35. If A is a strict p-ring, and its residue ring A/pA is a field, then
A is a complete discrete valuation ring, absolutely unramified.

Proposition 0.36. Suppose A and A’ are two p-rings with residue rings k
and k', suppose A is also strict. For every homomorphism h : k — k', there
exists exactly one homomorphism g : A — A’ such that the diagram

A9 QN

Lo

[ ¥

18 commutative. As a consequence, two strict p-rings with the same residue
ring are canonically isomorphic.

Proof. For a =Y fa(a;)p® € A, if g is defined, then

=0
g(a) =3 g(fala) - p =3 far(hlan)) - ¥,
i=0 1=0

hence the uniqueness. But by Proposition 0.33, g defined by the above way is
indeed a homomorphism. a

Theorem 0.37. For every perfect ring k of characteristic p, there exists a
unique strict p-ring H with residue ring k. In fact H = W (k).

Proof. The uniqueness follows from Proposition 0.36. For the existence, if
k =TF,[X2 7], then H = S satisfies the condition. In general, as every perfect
ring is a quotient of a ring of the type Fp[Xg“"’], we just need to show if
h: k — k' is a surjective homomorphism and if there exists a strict p-ring Hy,
with residue ring k, then there exists a strict p-ring Hy, with residue ring %'

Indeed, for a,b € Hy, we say a = b if the images of their coordinates
by h are equal. This is an equivalence relation, and if a = b,a’ = ¥, then
axa’ = bx*b' by Proposition 0.33. Let Hy: be the quotient of Hy modulo this
equivalence relation. It is routine to check Hy: is a strict p-ring with residue
ring k'.

Now for the second part, let H be the strict p-ring with residue ring k, and
let f: k — H be the multiplicative system of representatives of H. Define

i

GW(,I{Z)HH, (a07"' 7an7"')'_)zf(af7 )pi~
=0
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It is a bijection. When H = §, a=(Xg, ), b= (Yp, ), we have

ST YR = W) W)

n

= W, (So(XP ", YP ")),

Z F(Si(a, )P )pt = W (f(Si(a,0)P ")),

Since

n

Sy (xP " yr

FS(XP " YP ") = f(Si(a,b)” ") modp,

we get 0(a) +0(b) = 0(a+b) mod p"*!, for any n > 0. Therefore, 0(a)+6(b) =
O(a + b). Similarly, 8(a)f(b) = 6(ab). It follows that the formulas are valid
without any restriction on H, a and b. So 6 is an isomorphism. a

By the above theorem and Proposition 0.36, we immediately have:

Corollary 0.38. For k, k' perfect rings of characteristic p, Hom(k, k') =
Hom(W (k), W (k')).

Corollary 0.39. If k is a field, perfect or not, then vo =p = puv.

Proof. Tt suffices to check this when k is perfect; in that case, applying the
isomorphism € above, one finds:

O(pva) = f(a? )pt = pb(a) = O(pa),
1=0

which gives the identity. O
Now we can state the main theorems of the unequal characteristic case.

Theorem 0.40. (1) For every perfect field k of characteristic p, W (k) is the
unique complete discrete valuation ring of characteristic O (up to unique iso-
morphism) which is absolutely unramified and has k as its residue field.

(2) Let A be a complete discrete valuation ring of characteristic 0 with a
perfect residue field k of characteristic p > 0. Let e be its absolute ramification
index. Then there exists a unique homomorphism of ¢ : W(k) — A which
makes the diagram

W(k)—— A

NS

k

commutative, moreover ¥ is injective, and A is a free W (k)-module of rank
equal to e.
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Proof. (1) is a special case of Theorem 0.37.
For (2), the existence and uniqueness of v follow from Proposition 0.36,
since A is a p-ring. As A is of characteristic 0, v is injective. If 7 is a uniformizer
o) .
of A, then every a € A can be uniquely written as a = Y f(a;)7* for a; € k.
i=0
Replaced 7€ by p x (unit), then a is uniquely written as

oo e—1
a:ZZf(aij)wrjpi, oy € k.
i=0 j=0
Thus {1,m,---,m¢ 1} is a basis of 4 as a W (k)-module. ]

Remark 0.41. From now on, we denote the Teichmiiller representative r(a)
of a € k by [a], then by the proof of Theorem 0.37, the homomorphism
¥ : W(k) — A in the above theorem is given by

o0

¥((ag, ar,--+)) = an[aﬁ J-

n=0

For the case A = W(k), for a € k, the Teichmiiller representative r(a) is the
same as the element r(a) = (a,0,---), we have

(ag,ar,--+) = Zp"[aﬁin]- (0.15)

0.2.4 Cohen rings.

We have seen that if k is a perfect field, then the ring of Witt vectors W (k)
is the unique complete discrete valuation ring which is absolutely unramified
and with residue field k. However, if k is not perfect, the situation is more
complicated. We first quote two theorems without proof from commutative
algebra (cf. Matsumura [Mat86], § 29, pp 223-225):

Theorem 0.42 (Theorem 29.1, [Mat86]). Let (A, wA, k) be a discrete val-
uation ring and K an extension of k; then there exists a discrete valuation
ring (B, 7B, K) containing A.

Theorem 0.43 (Theorem 29.2, [Mat86]). Let (A,ma,kq) be a complete
local ring, and (R, mpg, kgr) be an absolutely unramified discrete valuation ring
of characteristic 0 (i.e., mg = pR). Then for every homomorphism h : kr —
ka, there exists a local homomorphism g : R — A which induces h on the
ground field.

Remark 0.44. The above theorem is a generalization of Proposition 0.36. How-
ever, in this case there are possibly many ¢ inducing h. For example, let
k =T,(z) and A = Z,(z), then the homomorphism = +— z + « in A for any
o € pZ, induces the identity map in k.
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Applying A = Z,, to Theorem 0.42, then if K is a given field of charac-
teristic p, there exists an absolutely unramified discrete valuation ring R of
characteristic 0 with residue field K. By Theorem 0.43, this ring R is unique
up to isomorphism.

Definition 0.45. Let k be a field of characteristic p > 0, the Cohen ring C(k)
is the unique (up to isomorphism) absolutely unramified discrete valuation
ring of characteristic 0 with residue field k.

We now give an explicit construction of C(k). Recall that a p-basis of a
field k is a set B of elements of k, such that

(1) [kP(by,- -+ ,by) : kP] = p" for any r distinct elements by,--- , b, € B;
(2) k = kP(B).
If k is perfect, only the empty set is a p-basis of k; if k is imperfect, there
always exists nonempty sets satisfying condition (1), then any maximal such
set (which must exist, by Zorn’s Lemmma) must also satisfy (2) and hence is
a p-basis.

Let B be a fixed p-basis of k, then k = k" (B) for every n > 0, and
Br " ={b» " |be B} is ap-basisof k» . Let I, = [[5{0,-- ,p" — 1}, then

T, = {ba = ]t o= (awes < In}

beB

n . m o, . m
generates k as a kP -vector space, and in general T? is a basis of kP over

n+m

kP . Set

Cn+1(k) = the subring of W,,11(k) generated by
W1 (kP") and [b] for b € B.
For © € k, we define the Teichmiiller representative [z] = (,0,---,0) €

Wi41(k). We also define the shift map V on W, 41(k) by V((zg,- - ,zy))
(0,0, ,2p—1). Then every element x € W,,1(k) can be written as

x = (0, ,xn) = [wo] + V([21]) + - + V" ([zn]).
We also has §
[V () =V"([y" ]2).

Then C,,+1 (k) is nothing but the additive subgroup of W,,11(k) generated by
{(Vr([(6)? z]) | 6% € Tpp_p,x € kP",7 = 0,--- ,n}. By Corollary 0.39, one
sees that

V' (¢"([2])) = p"[a] mod V"L

Let %, be ideals of Cp,+1(k) defined by

Uy = Crp1 (k) NV (Wii1(E)).
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Then %, is the additive subgroup generated by {V™([(b%)?"z]) | b* €
T,z € kP"\m > r}. Then we have Cp,41(k)/% ~ k and the multipli-
cation

p": Crya(R) /% — U | Uria

induces an isomorphism for all » < n. Thus %, is generated by p"™ and
by decreasing induction, one has %, = p"C,+1(k). Moreover, for any x €
Cni1(k) — 2, let y be a preimage of 271 € Cp,11(k)/%, then zy = 1 — 2 with
z €% and zy(1+ z+ -+ 2™) = 1, thus z is invertible. Hence we proved

Proposition 0.46. The ring Cp11(k) is a local ring whose mazimal ideal is
generated by p, whose residue field is isomorphic to k. For every r < n,
the multiplication by p" induces an isomorphism of Cpi1(k)/pCri1(k) with
P Cri1(k)/p"t1Chi1(K), and p"t1Chyq (k) = 0.

Lemma 0.47. The canonical projection pr : Wyi1(k) — Wy (k) induces a
surjection  : Cpy1(k) — Cp (k).

Proof. By definition, the image of C,1(k) by pr is the subring of W, (k)
generated by W, (k?") and [b] for b € B, but C,(k) is the subring generated
by W, (k?" ") and [b] for b € B, thus the map 7 is well defined.

For n > 1, the filtration W, (k) D V(W,(k))--- D V" Y(W,(k)) D
V™ (W, (k)) = 0 induces the filtration of C, (k) D pCy(k)--- D p"~Ch(k) D
p"Cn(k) = 0. To show 7 is surjective, it suffices to show that the associate
graded map is surjective. But for r < n, we have the following commutative
diagram

P Cri1 (k) /0" Crpa () =5 pCuk) /T TC (k)

| /|

VI W1 (B) )V Wi (k) = k2222 vrw, (k) )V W, (k) ~ k
Since the inclusion j(resp. j') identifies p"Cpni1(k)/p" " Cpy1(k) (resp.
p"Co(k)/p"t1Co (k) to kP", thus grr is surjective for r < n. For r = n,

p"Cn(k) = 0. Then gr is surjective at every grade and hence 7 is surjective.
O

By Proposition 0.46, we thus have
Theorem 0.48. The ring lim Cy (k) is the Cohen ring Cy(k) of k.

Remark 0.49. (1) By construction, C(k) is identified as a subring of W(k);
moreover, for kg = (] k?" the largest perfect subfield of k, C(k) contains

neN
W (ko).
(2) As C(k) contains the multiplicative representatives [b] for b € B, it
contains all elements [B*] and [B~%] for n € N and « € I,.
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0.3 Galois groups of local fields

In this section, we let K be a local field with the residue field k = kg perfect
of characteristic p and the normalized valuation vg. Let Ok be the ring of
integers of K, whose maximal ideal is mg. Let Ux = Oj = O — mg be
the group of units and Ul = 1+ m% for i > 1. Replacing K by L, a finite
separable extension of K, we get corresponding notations kr, vy, Op, mp, Uy
and U¢. Recall the following notations:

e cp/x € N*: the ramification index defined by v (L*) = L_7.

€L/K

e’L/K: the prime-to-p part of eL/K;
p"E/%: the p-part of er/k;
fr/K: the index of residue field extension [kr, : k].

From previous section, if char(K) = p > 0, then K = k((7)) for 7 a uni-
formizing parameter of m; if char(K) = 0, let Koy = Frac W (k) = W(k)[1/p],
then [K : Ko| = ex = vk (p), and K/Kj is totally ramified.

0.3.1 Ramification groups of finite Galois extension.

Let L/K be a Galois extension with Galois group G = Gal(L/K). Then G
acts on the ring Op. We fix an element x of Op which generates O, as an
Ox-algebra.

Lemma 0.50. Let s € G, and let i be an integer > —1. Then the following
three conditions are equivalent:
(1) s operates trivially on the quotient ring OL/miLH.
(2) vp.(s(a) —a) > i+ 1 for alla € Of,.
(8) vp(s(z) —z) >i+1.

Proof. This is a trivial exercise. O

Proposition 0.51. For each integer i > —1, let G; be the set of s € G satisfy-
ing conditions (1), (2), (3) of Lemma 0.50. Then the G;’s form a decreasing
sequence of mormal subgroups of G. Moreover, G_1 = G, Gy is the inertia
subgroup of G and G; = {1} for i sufficiently large.

Proof. The sequence is clearly a decreasing sequence of subgroups of G. We
want to show that G; is normal for all <. For every s € G and every t € G,
since G; acts trivially on the quotient ring OL/miLH, we have sts™1(z) =
x mod miLJrl7 namely, sts—! C G;. Thus, G; is a normal subgroup for all 5. The

remaining part follows just by definition. O

Definition 0.52. The group G; is called the i-th ramification group of G (or
of L/K).

We denote the inertia subgroup Gy by I(L/K) and its invariant field by
Ly = (L/K)™; we denote by G1 = P(L/K) and call it the wild inertia sub-
group of G, and denote its invariant field by Ly = (L/K)t*™e.
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Remark 0.53. The ramification groups define a filtration of G. The quotient
G/G) is isomorphic to the Galois group Gal(krz/k) of the residue extension.

The field Lg is the maximal unramified subextension inside L. In Propo-
sition 0.57, we shall see that L; is the maximal tamely ramified subextension
inside L.

Remark 0.54. Let H be a subgroup of G and K’ = L . If x € O, is a generator
of the Ok-algebra Oy, then it is also a generator of the O -algebra Of,. Then
H; = G; N H. In particular, the higher ramification groups of G are equal to
those of G, therefore the study of higher ramification groups can always be
reduced to the totally ramified case.

We shall describe the quotient G;/G;41 in the following.
Let 7 be a uniformizer of L.

Proposition 0.55. Let i be a non-negative integer. In order that an element
s of the inertia group Go belongs to G;, it is necessary and sufficient that
s(m)/m = 1modm?.

Proof. Replacing G by Gq reduces us to the case of a totally ramified exten-
sion. In this case 7 is a generator of O, as an Og-algebra. Si_nce the formula
vp(s(m)—7) = 1+vp(s(m)/m—1), we have s(7)/m = lmodm’, & se€ G,. O

We recall the following result:

Proposition 0.56. (1) U} /U} = kj;

(2) For i > 1, the group U};/UEH is canonically isomorphic to the group
miL/mlL+1, which is itself isomorphic (non-canonically)to the additive group of
the residue field ky, .

Back to the ramification groups, then the equivalence in Proposition 0.55
can be translated to _
s € G <= s(m)/m e Uj.

We have a more precise description of G;/G;41 following Proposition 0.56:

Proposition 0.57. The map which to s € G;, assigns s(mw)/mw, induces by
passage to the quotient an isomorphism 0; of the quotient group G;/Gii1
onto a subgroup of the group U};/UE‘H. This isomorphism is independent of
the choice of the uniformizer .

(1) The group Go/G1 is cyclic, and is mapped isomorphically by 6y onto
a subgroup of p(kr), the group of roots of unity contained in ky,. Its order is
prime to p, the characteristic of the residue field ky,.

(2) If the characteristic of kr, is p # 0, the quotients G;/Gi11, i > 1,
are abelian groups, and are direct products of cyclic groups of order p. The
group G1 is a p-group, the inertia group Gg has the following property: it is
the semi-direct product of a cyclic group of order prime to p with a normal
subgroup whose order is a power of p.
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Remark 0.58. The group Gy is solvable. If k is a finite field, then G is also
solvable.

In fact, we can describe the cyclic group Go/Gy1 = I(L/K)/P(L/K) more
explicitly.

Let N = e’L/K = [Ly1 : Lg]. The image of 6y in k} is a cyclic group of
order N prime to p, thus k, = kg, contains a primitive N"-root of 1 and
Im6y = py(k) = {e € kr | eV = 1} is of order N. By Hensel’s lemma, Ly
contains a primitive N-th root of unity. By Kummer theory, there exists a
uniformizing parameter m of Ly such that

L1 = Lo(a) with o a root of XV — 7.
The homomorphism 6 is the canonical isomorphism

Gal(L1/Lo) — py(kr)
g—e¢ ifga=Iaq,

where [¢] is the Teichmiiller representative of e.
By the short exact sequence

1— Gal(Ll/Lo) — Gal(Ll/K) — Gal(k'L/k) — 1,

Gal(L1/K) acts on Gal(L; /L) by conjugation. Because the group Gal(L; /L)
is abelian, this action factors through an action of Gal(ky/k). The isomor-
phism Gal(L1/Lo) = py(kz) then induces an action of Gal(kr/k) over
pn(kr), which is the natural action of Gal(kr/k).

0.3.2 Galois group of K°/K.

Let K*® be a separable closure of K and Gx = Gal(K*®/K). Let L be the set
of finite Galois extensions L of K contained in K, then

K*=|JL Gk =limGal(L/K).
Lel LeL

Let
K= |J L KW= U L.

Lel Lel
L /K unramified L /K tamely ramified

Then K'Y and K*™° are the maximal unramified and tamely ramified exten-
sions of K contained in K° respectively.

The valuation of K extends uniquely to K®, but the valuation on K*® is
no more discrete, actually vi ((K®)*) = Q, and K*® is no more complete for
the valuation.

The field k = Ogur /My is an algebraic closure of k. We use the notations
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Ik = Gal(K?®/K"") is the inertia subgroup, which is a closed normal sub-
group of Gg;

GK/IK = Gal(K“r/K) = Gal(]_i‘/k) = Gk;

Py = Gal(K®/K"™) is the wild inertia subgroup, which is a closed nor-
mal subgroup of Ix and of G;

I/ Pk = the tame quotient of the inertia subgroup.

Note that Pg is a pro-p-group, an inverse limit of finite p-groups.

For each integer N prime to p, the N-th roots of unity py (k) is cyclic of

order N. We get a canonical isomorphism

Ix/Px — lim b (k).
NeN
N prime to p
ordering = divisibility

If N divides N/, then N’ = N m, and the transition map is

H'N/(E) - “N(‘E)

er— ™,

Therefore we get

Proposition 0.59. If we write pryee = Z¢(1) (which is the Tate twist of Zy,
which we shall introduce in §1.1.4), then

I/ Px ———— [] Ze(1). (0.16)
t#

canonically

We denote

Z =11z, 70 =[]z,

tF#p t#p

where Z/(1) is isomorphic, but not canonically to Z'. Then

I/ P ~ 7' (1) = [[ Ze(D).
t#p

As Gg /Ix ~ Gal(k/k), the action by conjugation of G}, on I /Px gives the
natural action on Z(1).

0.3.3 The functions @ and .

Assume G = Gal(L/K) finite. Set

ic: G—=N, se—op(s(z)—x). (0.17)

The function ig has the following properties:

(1) ig(s) > 0 and ig(1) = +o0;
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(2)ig(s) > i+ 1< se Gy
(3) ig(tst™t) =ig(s);
(4) ic(st) > min(ic(®) ia(s).

Let H be a subgroup of G. Let K’ be the subextension of L fixed by H.
Following Remark 0.54, we have

Proposition 0.60. For every s € H, ig(s) =i¢(s), and H; = G; N H.

Suppose in addition that the subgroup H is normal, then G/H may be
identified with the Galois group of K'/K.

Proposition 0.61. For every 6 € G/H,

io/n(0) = 5 3 ia(s),

5—0
where €' = ey /.

Proof. For § =1, both sides are equal to +00, so the equation holds.
Suppose 0 # 1. Let x(resp. y) be an Og-generator of Oy (resp. Ok-). By
definition

e'i/n(0) = e'vir (6(y) —y) = vr(d(y) —y), and ic(s) = vr(s(x) — x).

If we choose one s € G representing J, the other representatives have the
form st for some ¢t € H. Hence it come down to showing that the elements
a=s(y) —yand b= [[,cp(st(x) — x) generate the same ideal in Op.

Let f € Ok/[X] be the minimal polynomial of z over the intermediate field
K'. Then f(X) = [[,c4(X —t(x)). Denote by s(f) the polynomial obtained
from f by transforming each of its coefficients by s. Clearly s(f)(X) = [[(X —
st(x)). As s(f) — f has coefficients divisible by s(y) — y, one sees that a =
s(y) — y divides 5(f)(z) — f(z) = 5(F)(x) = %b.

It remains to show that b divides a. Write y = g(x) as a polynomial in x,
with coefficients in Ok . The polynomial g(X) — y has = as root and has all
its coefficients in Ok it is therefore divisible by the minimal polynomial f:
9(X) —y = f(X)h(X) with h € Og/[X]. Transform this equation by s and
substitute x for X in the result; ones gets y — s(y) = s(f)(z)s(h)(z), which
shows that b = +s(f)(x) divides a. O

Let u be a real number > 1. Define G,, = G; where 7 is the smallest integer
> u. Thus
s€ Gy <= ig(s) >u+1.

Put u
D(u) = /O (Go : Gy)~tat, (0.18)

where for —1 <t <0,
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(G_1:Go)™t, whent=—1;
1, when — 1 < u < 0.

(GO : Gu) = {

Thus the function @(u) is equal to u between —1 and 0. For m <u <m +1
where m is a nonnegative integer, we have

1 .
®(u) = g—o(gl +go+4 ...+ gm + (u—m)gmy1), with g; = |G,]. (0.19)
In particular,
1 m
(m)+1=—> g (0.20)
9o =0

Immediately one can verify

Proposition 0.62. (1) The function @ is continuous, piecewise linear, in-
creasing and concave.

(2) 3(0) = 0.

(8) If we denote by @, and P} the right and left derivatives of @, then
P =9 = m, if u is not an integer; P; = m and . = m ,
if u is an integer.

Moreover, the proposition above characterizes the function &.

Proposition 0.63. &(u) = gio > min{ig(s),u+ 1} — 1.

seG
Proof. Let (u) be the function on the right hand side. It is continuous and
piecewise linear. One has 6(0) = 0, and if m > —1 is an integer and m < u <
m + 1, then

Hence 0 = &. a

Theorem 0.64 (Herbrand). Let K'/K be a Galois subextension of L/K
and H = G(L/K"). Then one has G, (L/K)H/H = G,(K'/K) where v =
djL/K/(u)'

Proof. Let G = G(L/K), H = G(L/K'). For every s’ € G/H, we choose a
preimage s € G of maximal value ig(s) and show that

ig/H(Sl) —1= QL/K’(iG(S) — 1) (021)

Let m = ig(s). If t € H belongs to Hyp,—1 = Gp—1(L/K'), then ig(t) > m,
and ig(st) > m and so that ig(st) = m. If ¢t ¢ H,,_1, then ig(t) < m and
ic(st) = ig(t). In both cases we therefore find that ig(st) = min{ig(t), m}.
Applying Proposition 0.61, since ig(t) = ig(t) and e’ = ep g = [Hol|, this
gives
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icyu(s) = el S ia(st) = el S min{ig(t), m}.

teH teH
Proposition 0.63 gives the formula (0.21), which in turn yields

s € Gu(L/K)H/H < ig(s)—1>u
— @L/K/(ig(s) — ].) > QSL/K’(U) — iK//K(SI) —1 > ¢L/K/(u)
< S, [S GU(K,/K),'U = @L/K/(U)
Herbrand’s Theorem is proved. a

Since the function @ is a homeomorphism of [—1,+00) onto itself, its in-
verse exists. We denote by ¥ : [—1,+00) — [—1,4+00) the inverse function of
®. The function @ and ¥ satisfy the following transitivity condition:

Proposition 0.65. If K'/K is a Galois subextension of L/K, then

Pk =Pk oPr/k and ¥ gk =V gk oWk /K.

Proof. For the ramification indices of the extensions L/K, K'/K and L/K’
we have er, i = ek er k- From Herbrand’s Theorem, we obtain G./H, =
(G/H)U, v = QSL/K’ (’U,) Thus

1 1 1
Gul = [(G/H)y|

€L/K €K' /K €L/K’

| Hol-

The equation is equivalent to

P i () = Phes 11 (V)P o (0) = (Prcr i © Pryicr)' (w).

As @L/K(O) = (@K’/K O@L/K’)(O)v it follows that qu/K = @K//K OqSL/K/ and
the formula for ¥ follows similarly. O

We define the upper numbering of the ramification groups by
G" := Gy, where u =¥ (v). (0.22)

Then G®®) = G,,. We have G™! = G, G° = Gy and G¥ = 1 for v > 0. We
also have

(v) = /0 60 6w, (0.23)

The advantage of the upper numbering of the ramification groups is that it is
invariant when passing from L/K to a Galois subextension.

Proposition 0.66. Let K'/K be a Galois subextension of L/K and H =
G(L/K"), then one has G*(L/K)H/H = G*(K'/K).

Proof. We put u = Vg /i (v),G" = G K, apply the Herbrand theorem and
Proposition 0.65, and get

G'H/H =Gy, (H/H = G%L/K,(m/x(v»
/ / )
:G¢L/K’(lpL/K’(u)) = Gu =G"

The proposition is proved. a
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0.3.4 Ramification groups of infinite Galois extension.

Let L/K be a infinite Galois extension of local fields with Galois group G =
Gal(L/K). Then GV, the ramification groups in upper numbering of G, is
defined to be lim Gal(L'/K)", where L’ runs through the set of all finite
Galois subextension of L. Thus G form a filtration of GG, and this filtration

is left continuous:
G'=[)G"

w<v

Moreover, Herbrand’s theorem is still true.

Proposition 0.67. Let L/K be an infinite Galois extension with group G.
If H is a closed normal subgroup of G, corresponding to the invariant field
LH = L'. Then

(1) If H is open in G, then G N H = HY5/#) where we write Ya/u for
WL//K .

(2) In general, (G/H)" = G'H/H.

Proof. (1) As H is open in G,

G= lm G/N, H= lim H/N, G'= lm (G/N)".
— — —
NaHG NaH<G N<JaH<G
N open in G N open in G N open in G

Let LN = L”, consider the finite Galois extension L”/L'/K, then (G/N)® N
H/N = (H/N)%c/1(") Take the limit, then G¥ N H = HYc/= (),

(2) If G/H is finite, for any normal open subgroup N of G contained in H,
by Herbrand’s Theorem, (G/H)" = (G/N)" - (H/N)/(H/N). Take the limit,
then (G/H)" = GYH/H in this case. In general,

(G/H)" = lim (G/M)"= lim G"M/M =G"H/H.
H<M<«G HaM<«G

We thus have the proposition. a

Definition 0.68. If for any v > —1, GV is an open subgroup of G, then the
extension L/K is called an arithmetically profinite extension (in abbev. APF
which stands arithmétiquement profinie in French).

If L/K is APF, then we can define

JI(G®: G¥)dw,  if v > 0;
v ={Jo
vk () {v, if —1<wv<0.

Similarly as in the finite extension case, ¥,k (v) is a homeomorphism of
[—1, +00) to itself which is continuous, piecewise linear, increasing and concave
and satisfies ¥(0) = 0. Let @1, be the inverse function of ¥. If the extension
L'/Lis APF and L/K is finite, then the transitive formulas ¢, = @1,/ ©
QL’/L and WL’/K = WL’/L (¢] !I/L/K Stlu hOld
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0.3.5 Different and discriminant.

Let L/K be a finite separable extension of local fields. The ring of integers
Oy is a free Og-module of finite rank.

Definition 0.69. The different Dy i of L/K is the inverse of the dual Ok -
module of O, to the trace map inside L, i.e., an ideal of L given by

O/ ={z€L|Tr(z'y) € Ok fory € OL}. (0.24)
The discriminant 0,/ is the ideal of K
D7 : OL] = (det(p)) (0.25)
where p : Z)E}K = Oy is an isomorphism of O -modules.

For every x € Dy i, certainly Tr(z~!) € Og; moreover, Dk is the
maximal Op-module satisfying this property.

Suppose {e;} is a basis of Oy, over Ok, let {e}} be the dual basis of @Z}K.
Define the isomorphism p by setting e; = p(e}), then

or/x = (detp)

and
det Tr(e;, e;) = det p - det Tr(e;, e} ) = det p.

Thus the discriminant d;,/x is given by
5L/K = (det Tr(eiej)) = (det(aj(ei)))2

where o; runs through K-monomorphisms of L into K*. Note that (det p~!)
is the norm of the fractional ideal DZ}K, thus d;,/xk = Np/k(Dr/K)-

Proposition 0.70. Let a (resp. b) be a fractional ideal of K (resp. L), then
Tr(b) Ca<=bCa-D /.
Proof. The case a = 0 is trivial. For a # 0,
Tr(b) C a <= a ! Tr(b) C Ox <= Tr(a"'b) C Ok
= a b CD = bCa Dy
O

Corollary 0.71. Let M/L/K be separable extensions of finite degrees. Then

Dnyx =Dy Dryres Onayie = Oy 5) M Ny (6011).-
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Proof. Repeating the equivalence of Proposition 0.70 to show that
-1 -1
¢ C QM/L ¢ C QL/K DM/K
O

Corollary 0.72. Let L/ K be a finite extension of p-adic fields with ramifica-
tion index e. Let Dy x = my'. Then for any integer n > 0, Tr(m}) = mfp
where r = [(m 4 n)/e], the largest integer less that (m + n)/e.

Proof. Since the trace map is Og-linear, Tr(m?7) is an ideal in Og. Now the
proposition shows that Tr(m7) C mf if and only if

n r -1 er—m
my CmK&)L/Kme ,

ie., if r < (m+n)/e. O

Proposition 0.73. Let x € Oy, such that L = K|z], let f(X) be the minimal
polynomial of x over K. Then D,k = (f'(x)) and dp)x = (N k f'()).

We need the following formula of Euler:

Lemma 0.74 (Euler).

Tr(z'/f'(x)) = (0.26)

0, ifi=0,-,n—2
1, ifi=n—1

where n = deg f.

Proof. Let z (k = 1,---,
of f(X). Then Tr(z'/f' ()
identity

--,n) be the conjugates of x in the splitting field
= > .2,/ f'(zx). Expanding both sides of the

1 = 1
) ; f'(@r) (X — k)

into a power series of 1/X, and comparing the coefficients in degree < n, then
the lemma follows. a

Proof (Proof of Proposition 0.73). Since {1,--- 2" '} is a basis of Op, by
induction and the above Lemma, one sees that Tr(z™/f'(x)) € Ok for every
m € N. Thus 2/ f'(x) € @Z}K. Moreover, the matrix (a;5), 0 < 4,j < n—1for
a;; = Tr(z™9/ f'(x)) satisfies a;; = 0 fori+j <n—1and =1fori+j=n—1,
thus the matrix has determinant (—1)""~Y. Hence 27 /f'(2z), 0 < j <n —1
is a basis of ZDZ}K. O
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Proposition 0.75. Let L/K be a finite Galois extension of local fields with
Galois group G. Then

vL(@pyk) = ials) =Y (IGi| - 1)
s#1 =0 (0.27)
— [ 6= vau= el [~ je e
Thus -
@0 = [ -6 e (0.28)
—1

Proof. Let x be a generator of Op over O and let f be its minimal polyno-
mial. Then Dy, is generated by f’(x) by the above proposition. Thus

vr(Dr/r) = vr(f’ ZUL r—s(x )):Zlg(s)

s#1 s#1

The second and third equalities of (0.27) are easy. For the last equality,

Oo—vflv:m— *I’uu:im —1du
[ a—ie = [ -G = s [ G -1

(0.28) follows easily from (0.27), since v = |G—1O‘UL. O

Corollary 0.76. Let L/M/K be finite Galois extensions of local fields. Then

> 1 1
D = — dv. 0.29
x@en) = [ ey ~ taammn) @ 09
Proof. This follows from the transitive relation Dy, = D /Dy /x and
(0.28). O

0.4 Ramification in p-adic Lie extensions

0.4.1 Sen’s filtration Theorem.

In this subsection, we shall give the proof of Sen’s theorem that the Lie fil-
tration and the ramification filtration agree in a totally ramified p-adic Lie
extension. We follow the beautiful paper of Sen [Sen72].

Let K be a p-adic field with perfect residue field k. Let L be a totally
ramified Galois extension of K with Galois group G = Gal(L/K). Let e =
e = vk (p) be the absolute ramification index of K. If G is finite, put

ve = inf{v |v > 0,G""¢ =1 for ¢ > 0}
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and
ug = inf{u | u > 0,Gyu1. = 1 for € > 0}.

Then
ug = ¥ (ve) < |Glvg. (0.30)

Lemma 0.77. Assume L/K is a totally ramified finite Galois extension with
group G. There is a complete non-archimedean field extension L' /K’ with the
same Galois group G such that the residue field of K' is algebraically closed
and the ramification groups of L/K and L' /K’ coincide.

Proof. Pick a separable closure K* of K containing L, then the maximal
unramified extension K" of K inside K* and L are linearly disjoint over K.
Let K/ = K™ and L' = ﬁ, then Gal(L'/K') = Gal(L/K). Moreover, if =
generates Of, as Og-algebra, then it also generates Op, as Og-algebra, thus
the ramification groups coincide. a

We now suppose G = A is a finite abelian p-group.

Proposition 0.78. If v < pe_Al, then (AV)P C APY; if v > pe_Al, then (AV)P =
AereA .

Proof. By the above lemma, we can assume that the residue field k is algebraic
closed. In this case, one can always find a quasi-finite field kg, such that k is
the algebraic closure of ko(cf. [Ser80], Ex.3, p.192). Regard K, = W(k:o)[z%] a
subfield of K. By general argument from field theory (cf. [Ser80], Lemma 7,
p-89), one can find a finite extension K; of K inside K and a finite totally

ramified extension L; of K71, such that

(i) K/K; is unramified and hence L; and K are linearly disjoint over Kj;
(il) L1 K = L.

Thus Gal(L;/K;) = Gal(L/K) and their ramification groups coincide. As
the residue field of K is a finite extension of kg, hence it is quasi-finite. The

proposition is reduced to the case that the residue field k is quasi-finite.
Now the proposition follows from the well-known facts that

. €A
UP C Upy, 1fv§p_1
. €A
UP =Uysie, fo> .
v + v p— 1
and the following lemma. O

Lemma 0.79. Suppose K is a complete discrete valuation field with quasi-
finite residue field. Let L/K be an abelian extension with Galois group A.
Then the image of U under the reciprocity map K* — G is dense in A™.

Proof. This is an application of local class field theory, see Serre [Ser80], The-
orem 1, p.228 for the proof.
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Corollary 0.80. For n € N, let A, be the n-torsion subgroup of A. If va
p’%leA, then va > p™vajam, for all m > 1; if va > Z%

VA/Ap T €A

A

€4, them vy

Proof. If va < -Pgea, then t, = p~"Mvg < pifleA, and (Atmte)p™ =
AP tmte — Avate — ] for ¢ > 0, then Almte C Agpmy and thus va/a,m,
p~ 4.

Ifog > 1%6,4, thent =v4 —eq4 > IﬁeA, and (AP = A(t+e+eq)

A(va +¢) for e > 0. Thus vg = va/A, +ea-

Definition 0.81. We call A small if vg < p’%leA, or equivalently, if (A®)P
APT for all x > 0.

Lemma 0.82. If A is small, then for every m > 1,
Upg > pm_l(p — 1)(A(pm) : A(p))uA/A(pm). (031)

Proof. For every € > 0, we have

IN

N ol

vaA

ug =Pa(va) = /OUA (A: At)dt > / (A: At)dt

_1’UA+8

-1 -1
>(va —p log —e)(A: AP vatE) > (vA . pT - €> (A:Ay)).

The last inequality holds since (ApflvA *€)P = 1 by Proposition 0.78. Then by
Corollary 0.80,

ua > va(A:Agy))- b1 > " p = Dvasam (A Ag)).

Since uajam) < VAJAm, (A: Agmy) by (0.30), we have the desired result.

We now suppose G is a p-adic Lie group of dimension d > 0 with a Lie
filtration {G(n)}. We suppose that G(1) is a non-trivial pro-p group and that

Gn)=Gn+1)P  ={seG|s"eCGn+1)}
For n > 1, we denote
U =¥a/Gn)s Un = VG/G(n),  Un = Uq/Gn) = Yn(Vn), €n = egm)- (0.32)

Proposition 0.83. For each n > 1 we have G’ NG (n) = G(n)*®) forv > 0.
In particular,

G¥ = G(n)tnH(v=vn)(GCM)  for gy s g, (0.33)

i.e.,

Gttt = G(n)Untten  fort > 0. (0.34)

As a consequence, forn, r > 1,

VG (n)/G(ntr) = Un + (Ungr — vn) (G : G(n)). (0.35)
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Proof. The first equality follows from Proposition 0.67. For v > wv,, then
GY C G(n) and

U, (v) = Up(vp) + /U(G :G(n))dv = up + (v —vp)(G : G(n)).

n

NOW ¥ = UG(n)/G(ntr) IS characterized by the fact that G(n)” € G(n+r) and
G(n)"™ C G(n+r) for all € > 0, but & = v, is characterized by the fact
that G* € G(n +r) and G**¢ C G(n + r) for all € > 0, thus (0.35) follows
from (0.33). O

Proposition 0.84. There exists an integer ny and a constant ¢ such that for
alln>nq,
Upt1 =vUp +€ and v, =ne-+c.

Proof. By (0.34), we can replace G by G(ng) for some fixed ng and G(n) by
G(no +n). Thus we can suppose G = exp .Z, where . is an order in the Lie
algebra Lie(G) such that [£,.Z] C p3.% and that G(n) = expp™.Z. Then
(G : G(n)) = p™® for all n, and for » < n + 1, there are isomorphisms

G(n)/Gn+r) 5 pr2fp v '8 2" 2 = (T D). (0.36)

Thus G(n)/G(n + d + 3) is abelian for sufficient large n.

If G(n)/G(n +r) is abelian and small for » > 2, then apply Lemma 0.82
with A = G(n)/G(n+r), m = r — 1. Note that in this case up4, = ua and
Un+1 = uA/A(pr—1)7 then

Un+r r—2—d UYn+1
Unir > (p— 1)pr2md . ntl,
enJrr en+1

But note that the sequence u, /e, < p%l is bounded, then for r = d + 3,
G(n)/G(n+ d+ 3) can not be all small.
We can thus assume G(ng)/G(n1 +1) is not small, then by Corollary 0.80,

VG(no)/G(n1+1) = UG (no)/G(n1) T Engs

and by (0.35), then
Up,4+1 = Un, + €.

Hence G(n1)/G(ny 4+ 2) is not small and vy, 12 = vpn,4+1 + e. Continue this
procedure inductively, we have the proposition.

Theorem 0.85. There is a constant ¢ such that
Gne—i—c C G(TL) C Gne—c

for all n.



34 0 Preliminary

Remark 0.86. The above theorem means that the filtration of G by ramifica-
tion subgroups with the upper numbering agrees with the Lie filtration. In
particular this means that a totally ramified p-adic Lie extension is APF.

If G = Z,, the above results were shown to be true by Wyman [Wym69],
without using class field theory.

Proof. We can assume the assumptions in the first paragraph of the proof of
Proposition 0.84 and (0.36) hold. We assume n > ny > 1.

Let ¢; be the constant given in Proposition 0.84. Let ¢y = ¢; + po‘_el
some constant o > 1. By Proposition 0.84, G"¢*t¢ C G(n) for large n.

By (0.34),

for

Gneteo — Gvn,+paf61 = G(n)u"Jrziq.
Apply Proposition 0.78 to A = G(n)/G(2n + 1), since u,, + J£5 > 27, we
have
(Gne+co)pG(2n + 1) — G(n+1)e+COG(2TL + 1) (037)

Put

M, =p "log(G"T°G(2n)/G(2n)) C L /p"ZL.
Then (0.37) implies that M,, is the image of M,,11 under the canonical map
LpHY — L/pn L. Let

M =1limM, C Z.
—

n

Then M,, = (M + p".L)/p"ZL. We let
[=Q,Mn%~.

Since the ramification subgroups G™¢*¢ are invariant in G, each M, and

hence M is stable under the adjoint action of G on .. Hence Q,M, as a

subspace of Lie(G), is stable under the adjoint action of G, hence is an ideal of

Lie(G) = Qp-Z. As aresult, [ is an ideal in £. Let N = exp [ and G = G/N.

Then G is a p-adic Lie group filtered by G(n) = exp p".Z where £ = .£/I.
A key fact of Sen’s proof is the following Lemma:

Lemma 0.87. dimG =0, i.e., G =1.

Proof (Proof of the Lemma). If not, we can apply the previous argument to
G to get a sequence v,, and a constant ¢; such that v,, = ne + ¢ for n > n;.
But on the other hand, we have

G = greteo N/N ¢ G(2n)N/N = G(2n)
G0 G(2n) /G(2n) = exp(p" My,)
Cexp((p"I +p*".2)[p*" &) = N(n)G(2n)/G(2n).

Hence for all n > nq and 71, one gets ne + ¢y > U2, = 2ne + ¢;, which is a
contradiction. O
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By the lemma, thus we have I = Z, i.e., p"™°.¥ C M for some ng. Then
for large n,

pr /"L C (P L+ M)/p" L = M,.
Applying the operation exp op”™, we get

G(n+ng)/G(2n) C G™T°G(2n)/G(2n).

Thus G"*¢0 contains elements of G(n + ng) which generate G(n + ng)
modulo G(n + ng + 1). It follows that G"*t% > G(n + ng) as Gt =
lim G™etG(m)/G(m) is closed. This completes the proof of the theorem.

O

0.4.2 Totally ramified Z,-extensions.

Let K be a p-adic field. Let K, be a totally ramified extension of K with
Galois group I' = Z,. Let K, be the subfield of K., which corresponds to
the closed subgroup I'(n) = p"Z,. Let v be a topological generator of I" and
7n =~"" be a generator of I},.

For the higher ramification groups I'¥ of I' with the upper numbering,
suppose I' = I'(4) for v; < v < v;41, then by Proposition 0.84 or by Wyman’s
result [Wym69], we have v,41 = v, + e for n > 0. By Herbrand’s Theorem
(Theorem 0.64),

Ir'@)/I'(n), ifv;<v<wvigr, @ <n;

1, otherwise.

Gal(K,/K)" = I'"T'(n)/T'(n) = {
(0.38)

Proposition 0.88. Let L be a finite extension of K. Then
TrL/Koo (OL) Dmg .

Proof. Replace K by K, if necessary, we may assume L = LyK, such that
Lo/K is finite and linearly disjoint from K, over K. We may also assume
that Lo/K is Galois. Put L,, = LoK,,. Then by (0.29),

o0

@1, c,) = [ (|Gall (K1 = Gal(La/K)'| ) do.
-1
Suppose that Gal(Lyg/K)” = 1 for v > h, then Gal(L/K)”" C I and
Gal(L,/K)" = Gal(K,,/K)" for v > h. We have

h

vk (Dr,/K,) g/ | Gal(K,,/K)"| 'dv — 0
1

as n — oo by (0.38). Now the proposition follows from Corollary 0.72. O
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Corollary 0.89. For any a > 0, there exists x € L, such that
vg(x) > —a and Trp /i _(x) = 1. (0.39)

Proof. For any a > 0, find o € O such that vg(Try k() is less than a.
Let x = m, then z satisfies (0.39). O

Remark 0.90. Clearly the proposition and the corollary are still true if replac-
ing Ko by any field M such that Ko, C M C L. (0.39) is called the almost
étale condition.

Proposition 0.91. There is a constant ¢ such that

n

vk (Dk, k) =en+c+p "a,
where a,, is bounded.

Proof. We apply (0.38) and (0.28), then

o0

vk (Dk, k) = / (1—] Gal(Kn/K)”|_1)dv =en+c+p "a,.

-1

O

Corollary 0.92. There is a constant ¢ which is independent of n such that
for x € K,,, we have

vg(p™" TrK"/K(m)) > vk (x) —c.

Proof. By the above proposition, vk (Dk,,,/k,) = e + p~"b, where b, is
bounded. Let O,, be the ring of integers of K, and m,, its maximal ideal, let
QKnJrl/Kn = m%+1, then

TrK1L+1/Kn (mil"rl) = mi”

where j = [i;d} (cf. Corollary 0.72). Thus

n

UK(pfl Trg, .. /K. (2)) > vk (x) —ap™
for some a independent of n. The corollary then follows. O
Definition 0.93. For x € K, if ¢ € Ky, we define
Rn(z) =p " Tri, /i, (), Ry yi(0) = Rogi(z) = Rngia ().
R, (z) is called Tate’s normalized trace map.

Remark 0.94. Use the transitive properties of the trace map and the fact
[Kngm @ Kp] = p™, one can easily see that p~™ Trg, . /k,(2) does not
depend on m such that z € K, 4,.
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For n = 0, we write Ro(z) = R(z).
Proposition 0.95. There exists a constant d > 0 such that for all x € K,
vg(z — R(x)) > v (yx —x) — d.
Proof. We prove by induction on n an inequality
vg(z — R(z)) > vg(yz —x) — ¢y, fz € K, (0.40)

with ¢, 4+1 = ¢, + ap™™ for some constant a > 0.
For z € K, 41, let v, = ~?" . then

p—1

p—1
pr—Trg, k(@) =pr =Y vhe = (1+yn+-+7 )1 -z,
=0 =1

thus
vk (z —p~ Tri, /., (2)) 2 vk (@ — ) — e
In particular, let ¢; = e, (0.40) holds for n = 1.
In general, for x € K, 11, then
R(TrKnJrl/Kn .T) = pR(.’K), and (7 - 1) TrKn+1/Kn (QL') = TrKn+1/Kn (7‘% - LL')
By induction,

vk (Trg, . /K, (2) — pR(2)) 2vk(Trg, ,, /x, (Y2 — 7)) — cn

o (@ — @)+ e — ap" — ¢,
thus
vxc(z = R(x)) > min(oxe (e —p~ Trie, i, (@), 0k (ya — @) = e — ap™")

> vk (yx — x) —max(cy, ¢, +ap™ ™)
which establishes the inequality (0.40) for n + 1. O

Remark 0.96. If we take K, as the ground field instead of K and replace R(x)
by R, (z), from the proof we have a corresponding inequality with the same
constant d.

By Corollary 0.92, the linear operator R,, is continuous on K for each n
and therefore extends to K, by continuity. As K, is complete, R, (K~) = K,
for each n. Denote R

X, :={z € K, R,(z) = 0}.

Then X, is a closed subspace of [A(oo.
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Proposition 0.97. (1) [A(Oo =K, ® X,, for each n.
(2) The operator v, — 1 is bijective on X,, and has a continuous inverse
such that
vk ((yn = 1) 7 () > vk () —d

forxz e X,,.
(8) If X is a principal unit which is not a root of unity, then v — A has a
continuous inverse on K.

Proof. Tt suffices to prove the case n = 0.

(1) follows immediately from the fact that R = R o R is idempotent.

(2) For m € N, let K9 = K, N Xo, then K,,, = K & K, and X,
is the completion of Ko o = UKy, 0. Note that Ky, o is a finite dimensional
K-vector space, the operator v — 1 is injective on K, 9, and hence bijective
on K, o and on K . By Proposition 0.95, then

v ((y=1)7y) > vk (y) — d

for y = (y — 1)z € K, 0. Hence (v — 1)7! extends by continuity to X, and
the inequality still holds.

(3) Since v — A is obviously bijective and has a continuous inverse on K
for A # 1, we can restrict our attention to its action on Xy. Note that

=A== (y=1)" A=1)),

we just need to show that 1 — (y — 1)71(\ — 1) has a continuous inverse. If
vi (A—1) > d for the d in Proposition 0.95, then Vi ((y—1)"1(A—1)(z)) > 1
in Xg and

L= =)= ) = Y- )7 - )

k>0

is the continuous inverse in Xy and v — A has a continuous inverse in X.

In general, as d is unchanged if replacing K by K,,, we can assume vx ()\1’n —
1) > d for n>> 0. Then v*" — \?" has a continuous inverse in X and so does
¥ = A a

0.5 Continuous Cohomology

0.5.1 Abelian cohomology.

Definition 0.98. Let G be a group. A G-module is an abelian group with a
linear action of G. If G is a topological group, a topological G-module is a
topological abelian group equipped with a linear and continuous action of G.
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Let Z[G] be the ring algebra of the group G over Z, that is,

G] = {Z agg : ag € Z,ay = 0 for almost all g}.
geG

A G-module may be viewed as a left Z[G]-module by setting

(Z agg)(x) = Zagg(x),for allag €Z,9g€ G,z € X.

The G-modules form an abelian category.

Let M be a topological G-module. For any n € N, the abelian group of
continuous n-cochains CZ% (G, M) is defined as the group of continuous maps
G" — M for n > 0, and for n =0, CO (G, M) := M. Let

cont

n
Ccont

(G, M) — C™ (G, M)

cont

be given by

(doa)(g) = g(a) —
(dif)(g1,92) = 91(f(92)) — f(9192) + f(g1);
(dnf)(g1592, s Gns Gn+1) = 91(f (92, s Gn» Gny1))

+Z 917927"' y9i—1,9i9i+1, " " * agnagn'i‘l)

+ (_ )n+1f(91792a o 7gn)

We have d,,+1d,, = 0, thus the sequence C¢,

cont

(G.M):

(G M) % .. D em

C((:)ont(G M) Cl COIlt(G’ M) % e

cont

(G, M) %4 2

cont
is a cochain complex.
Definition 0.99. Set

cont (G M) Kerd,, cont (G M) =Imd,,
Cont(G M) Zn/Bn:Hn(C.(G,M))
These groups are called the group of continuous n-cocycles, the group of con-

tinuous n-coboundaries and the n-th continuous cohomology group of M re-
spectively.

Clearly we have

Proposition 0.100. (1) H,
a, for all g € G}.
(2)

G, M) = zZ' {f:G— M| f continuous, f(g1g2) —glf(gg)—i—f(gl)}
BT {sa =(g—g-a—a):ae€ M}

(G,M) = Z° = M9 = {a € M | g(a) =

Cont

Cont(
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Corollary 0.101. When G acts trivially on M, then

(G,M)=M, H}

cont

(G, M) = Hom(G, M).

cont

The cohomological functors H"(G, —) are functorial. If n : My — M> is
a morphism of topological G-modules, then it induces a morphism of com-

plexes Co (G, M) — C2 (G, Ms), which then induces morphisms from
Zcrt)nt<G Ml) (resp Bcont(G Ml) or Hcont(G7M1)) to Zgont(G’Mz) (resp.
cont(G MQ) or Hcont(G MQ))

Proposition 0.102. For a short exact sequence of topological G-modules
0— M M2 o,
then there is an exact sequence

0— MG - MC - MG 2, 4 gl

cont

(G,M') — H}

cont

(G, M) — H

cont

(G, M"),

where for any a € (M")%, 6(a) is defined as follows: choose x € M such that
B(z) = a, then define 6(a) to be the continuous 1-cocycle g — a1 (g(z) — ).

Proof. Note that for any g € G, B(g9(z) — z) = B(g(z)) — B(z) = g(B(x)) —
B(x) = g(a)—a = 0, Thus g(z) —z € Im o, so that a~!(g(z) —z) is meaningful.
The proof is routine. We omit it here. a

Remark 0.103. From the above proposition, the functor H, (G, —) is left
exact. In general, the category of topological G-modules does not have suf-
ficiently many injective objects, and it is not possible to have a long exact
sequence.
However, if 8 admits a continuous set theoretic section s : M" — M, one
can define a map
On : HY

cont

(G,M") — H-THG, M), forallneN

cont

to get a long exact sequence (ref. Tate [Tat76]).

Two special cases.
(1) If G is a group endowed with the discrete topology, set

H™(G, M) = (G, M),

cont
then one has a long exact sequence.

(2) If G is a profinite group and M is endowed with the discrete topology,
we also have a long exact sequence. In this situation, to say that G acts
continuously on M means that, for all a € M, the group G, = {g € G |
g(a) = a} is open in G. In this case, M is called a discrete G-module. We set
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H"(G,M)=H} .(G,M).

Denote by H the set of normal open subgroups of G, then one sees that the
natural map

lim H*(G/H,M") = H"(G, M)

—

HeH

is an isomorphism.

Example 0.104. If G is a field and L is a Galois extension of K, then G =
Gal(L/K) is a profinite group and H"(G, M) = H"(L/K, M) is the so-called
Galois cohomology of M. In particular, if L = K* is a separable closure of K,
we write H"(G, M) = H"(K, M).

0.5.2 Non-abelian cohomology.

Let G be a topological group. Let M be a topological group which may be non-
abelian, written multiplicatively. Assume M is a topological G-group, that is,
M is equipped with a continuous action of G such that g(zy) = g(x)g(y) for
all g € G, x,y € M. We can define

Hﬁ(:)ont(GDM) :MG = {JIE M | g(x) :x7v9 € G}
and

Zowt(G, M) = {f : G — M continuous | f(g192) = f(g1) - 91.f(g2)}-

If f,f € ZL,.(G, M), we say that f and f’ are cohomologous if there exists
a € M such that f'(g) = a=f(g)g(a) for all g € G. This defines an equivalence
relation for the set of cocycles. The cohomology group HZ (G, M) is defined
to be the set of equivalence classes in ZL (G, M). HL . (G, M) is actually

a pointed set with the distinguished point being the trivial class f(g) = 1 for
all g € G.

Definition 0.105. H. (G, M) (abelian or non-abelian) is called trivial if it

contains only one element.

The above construction is functorial. If n : M; — M is a continuous
homomorphism of topological G-modules, it induces a group homomorphism

ME — M§
and a morphism of pointed sets

Hclont(G7 Ml) - Hclont(G7 Mg)

We note here that a sequence X Ay 5 Zof pointed sets is exact means
that AM(X) = {y € Y | u(y) = 20}, where A, p are morphisms of pointed sets
and zg is the distinguished element in Z.
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Proposition 0.106. Let 1 — M’ > M P, M" =1 be an ezact sequence
of continuous topological G-groups. Then there exists a long exact sequence of
pointed sets:

1— MG MGG S gl q, M) HY G, M) B HY (G, M),

where the connecting map 6 is defined as follows: Given ¢ € M"G, pick b € B
such that 8(b) = c¢. Then

5(c) = (s — a (b7 1sh)).

Proof. We first check that the map ¢ is well defined. First, 3(b~'s(b)) =
B(b~1)sB(b) = 1, then b~1s(b) € Ker8 = Ima, as = a~1(b~tsb) € M'. To
simplify notations, from now on we take a to be the inclusion M’ < M. Then

ase = b tst(b) = b ts(b) - s(b7 (b)) = ass(ay),

thus a, satisfies the cocycle condition. If we choose b’ other than b such that
B(b') = B(b) = ¢, then b’ = ba for some a € A, and

a, =b"1s(b') =a b s(b)s(a) = a tass(a)

is cohomologous to as.

Now we check the exactness:

(1) Exactness at M'C. This is trivial.

(2) Exactness at M. By functoriality, Sy = 1, thus Im aig € Ker 3y. On
the other hand, if By(b) =1 and b € MY, then 3(b) =1 and b€ M' N MC =
MG,

(3) Exactness at M"C. If ¢ € By(B%), then ¢ can be lifted to an element
in M% and §(c) = 1. On the other hand, if §(¢) = 1, then 1 = a, = b~ 's(b)
for some b € 37!(c) and for all s € G, hence b = s(b) € MC.

(4) Exactness at H!(G, M'). A cocycle as maps to 1 in H'(G, M) is equiv-
alent to say that as = b=1s(b) for some b € M. From the definition of §, one
then see @18 = 1. On the other hand, if a; = b=1s(b) for every s € G, then
B(b"5(6)) = Blas) = 1 and A(b) € M"E and 5(B(b)) = a,.

(5) Exactness at H'(G, M). By functoriality, Bic; = 1, thus Ima; C
Ker 3. Now if b, maps to 1 € H(G,M"), then there exists ¢ € M",
¢ 1B(bs)s(c) = 1. Pick b’ € M such that 3(b') = ¢, then B(b'~lbss(b')) = 1
and v’ ~1b,s(b') = a, is a cocycle of M. O

We use the same conventions as in the abelian case: If G is endowed with
the discrete topology, HZ (G, M) is simply written as H"(G, M). If G is
a profinite group and M is a discrete G-module(i.e., M is endowed with the
discrete topology and G acts continuously on M, HZY . (G, M) is again written

as H"(G, M) and we get cohomology of profinite groups. In particular, if G
is the Galois group of a Galois extension, we get Galois cohomology.
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Let G be a topological group and let H be a closed normal subgroup
of GG, then for any topological G-module M, M is naturally regarded as an
H-module and M a G/H-module. Then naturally we have the restriction
map

res: HY . (G,M)— H.

cont<H7 M)

Given a cocycle as : G/H — M*, for any s € G, just set as = as : G —

MH C M, thus we have the inflation map
Inf: H} (G, M) — H

cont

(H, M).

Proposition 0.107 (Inflation-restriction sequence). One has the follow-
ing exact sequence

Iif’ Hclont(Ga M) ﬁ) Hl

cont

1— H!

cont(G/H? MH) (H7 M) (041)
Proof. By definition, it is clear that the composition map res o Inf sends any
element in H}  (G/H, M*) to the distinguished element in H} ,(H,M).
(1) Exactness at H. (G/H, MH): If a;, = as is equivalent to the distin-
guished element in H!(G, M), then a; = a~'s(a) for some a € M, but for
any t € H, a5 = ag, thus s(a) = s(t(a)), i.e., a = t(a) and hence a € M so
as is cohomologous to the trivial cocycle from G/H — AH.

(2) Exactness at H. (G, M): If as : G — M is a cocycle whose restriction
to H is cohomologous to 0, then a; = a~'t(a) for some a € M and all t € H.
Let a’, = a-ass(a™!), then d’, is cohomologous to as and a}, = 1 for all t € H.
By the cocycle condition, then o}, = a,s(a}) = a, if t € H. Thus a/, is constant
on the cosets of H. Again using the cocycle condition, we get a}, = ta’, for all
t € H, but ts = st’ for some t' € H, thus a), = ta/, for all t € H. We therefore

get a cocycle az = a’, : G/H — A which maps to a,. O

At the end of this section, we recall the following classical result:

Theorem 0.108 (Hilbert’s Theorem 90). Let K be a field and L be a
Galois extension of K (finite or not). Then

(1) HY(L/K,L) = 0;

(2) H'(L/K,L*) = 1;

(3) For allm > 1, HY(L/K,GL, (L)) is trivial.

Proof. Tt suffices to show the case that L/K is a finite extension. (1) is a
consequence of normal basis theorem: there exists a normal basis of L over
K.

For (2) and (3), we have the following proof which is due to Cartier (cf.
Serre [Ser80], Chap. X, Proposition 3).

Let ¢ be a cocycle. Suppose z is a vector in K", we form b(z) =

cs(s(x)). Then b(z), x € K™ generates K™ as a K-vector space.
se€Cal(L/K)
In fact, if u is a linear form which is 0 at all b(z), then for every h € K,
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0= u(b(ha)) = 3 e, -uls(h)s(@) = 3 s(hyulay(s(x))).

Varying h, we get a linear relation of s(h). By Dedekind’s linear independence
theorem of automorphisms, u(ass(z)) = 0, and since a is invertible, u = 0.
By the above fact, suppose x1,--- ,x, are vectors in K™ such that the
y; = b(x;)’s are linear independent over K. Let T be the transformation
matrix from the canonical basis e; of K™ to z;, then the corresponding matrix
of b = > ¢ss(T) sends e; to y;, which is invertible. It is easy to check that
s(b) = ¢; b, thus the cocycle c is trivial. O
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£-adic representations of local fields: an
overview

1.1 ¢-adic Galois representations

1.1.1 Linear representations of topological groups.

Let G be a topological group and F be a field.

Definition 1.1. A linear representation of G with coefficients in E' is a finite
dimensional E-vector space V' equipped with a linear action of G; equivalently,
a linear representation is a homomorphism

p: G — Autg(V) ~ GLi(E)

where h = dimg(V).

If V is endowed with a topological structure, and if the action of G is
continuous, the representation is called continuous. In particular, if E is a
topological vector field, V' is given the induced topology, then such a continuous
representation is called a continuous FE-linear representations of G.

If moreover, G = Gal(K*®/K) for K a field and K* a separable closure of
K, such a representation is called a Galois representation.

We consider a few examples:

Ezample 1.2. Let K be a field, L be a Galois extension of K, G = Gal(L/K)
be the Galois group of this extension. Put the discrete topology on V and
consider continuous representations. The continuity of a representation means
that it factors through a suitable finite Galois extension F of K contained in
L:

G— GLg(V)

|

Gal(F/K)
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Ezxample 1.8. Assume that E is a completion of a number field. Then either
E =Ror C, or F is a finite extension of Q; for a suitable prime number /.

If E=RorC, and p: G — Autg(V) is a representation, then p is
continuous if and only if Ker (p) is an open normal subgroup of G.

If E is a finite extension of Q, and p: G — Autg(V) is a representation,
[E:Q = d, h = dimg(V), then dimg,(V) = hd, Autg(V) C Autg,(V),
and we can view the representation as a representation over Q,. To give a
continuous FE-linear representation of GG is the same as to give a continuous
Q¢-linear representation of G' together with an embedding £ — Autg, (V).

1.1.2 ¢-adic representations.

From now on, let K be a field, L be a Galois extension of K, G = Gal(L/K)
be the Galois group of this extension.

Definition 1.4. An /(-adic representation of G is a finite dimensional Q-
vector space equipped with a continuous and linear action of G.

If G = Gal(K*/K) for K* a separable closure of K, such a representation
is called an f-adic Galois representation.

Ezample 1.5. The trivial representation is V = Qp with g(v) = v forall g € G
and v € Q.

Definition 1.6. Let V' be an f-adic representation of G of dimension d. A
lattice in V is a sub Zg-module of finite type generating V as a Qg-vector
space, equivalently, a free sub Zg-module of V' of rank d.

Definition 1.7. A Z,-representation of G is a free Zy-module of finite type,
equipped with a linear and continuous action of G.

Let Ty be a lattice of V, then for every g € G, g(Tp) = {g9(v) | v € Tp} is
also a lattice. Moreover, the stabilizer H = {g € G | g(Tp) = To} of Ty is an
open subgroup of G and hence G/H is finite, the sum

=2 g(To)
geG

is a finite sum. 7" is again a lattice of V, and is stable under G-action, hence
is a Zg-representation of G. If {e, -+ ,eq} is a basis of T over Zy, it is also a
basis of V over Q, thus

G - GL4(Q)

GLa(Ze)
and V =0Q,®z, T
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On the other hand, given a free Zs-representation T of rank d of G, we get
a d-dimensional ¢-adic representation

V=Q®z, T, gA®t)=A®9(t), N€QunteT.

For all n € N, G acts continuously on T/¢™T with the discrete topology.
Therefore we have

p: G Autz;é (T) (2 GLd(Zg))
Aut(T/0"T) (= GLq4(Z/0"7))
since T/0"T ~ (Z/("Z)" and T = lim T'/¢"T. The group H,, = Ker (p,) is a
neN
normal open subgroup of G and Ker (p) = (| H, is a closed subgroup.

neN
Assume G = Gal(K*/K). Then (K*)" = K, is a finite Galois extension
of K with the following diagram:

Pn

G Aut(T/1"T)
Gal(K,/K)

We also set Koo = |J Ky, and Koo = (K*) with H = Ker (p). So we get a
sequence of field extensions:

1.1.3 Representations arising from linear algebra.

Through linear algebra, we can build new representations starting from old
representations:

e Suppose Vi and V5, are two f-adic representations of G, then the tensor
product Vi @ Vo = Vi ®q, Vo with g(v; ® v2) = gvi ® gve is an f-adic
representation.

e The r-th symmetric power of an f-adic representation V: Sym@z V, with
the natural actions of G, is an f-adic representation.

e The r-th exterior power of an f-adic representation V: /\(55 V', with the
natural actions of G, is an f-adic representation.

e For V an f-adic representation, V* = %, (V, Q) with a G-action g-p € V*
for p € V* g € G defined by (g ¢)(v) = ¢(g~! - v), is again an f-adic
representation, which is called the dual representation of V.
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1.1.4 Examples of f-adic Galois representations.

We assume that K is a field, K* is a fixed separable closure of K, G =
Gal(K*®/K) in this subsection.

(1). The Tate module of the multiplicative group G,,.

Consider the exact sequence

o
1— ppn (K*) — (K == (K*)* — 1

9

where for a field F, ’

wn(F)={a€F|d" =1}. (1.1)
Then pyn (K®) ~ Z /"7 if char K # ¢ and ~ {1} if char K = {. If char K # ¢,
the homomorphisms

Pont1 (K°) — pon (K°), a— a'

form an inverse system, thus define the Tate module of the multiplicative group
Gm
To(Gr) = lim prgn (K°). (1.2)
neN
Ty(Gyy) is a free Zg-module of rank 1. Fix an element t = (g, )nen € To(G)
such that
50217 81#17 Eﬁ+1 =E&np.-

Then Ty(G) = Zyt, equipped with the following Z,-action

A-t=(epr) An € Z, X\ = X\, mod £"Z,.

neN’

The Galois group G acts on Ty(G,,) and also on Vo(G,,) = Qr ®z, Te(Gy).
Usually we write

Ty(Gp) = Ze(1), Vo(Gr) = Qe(1) = Qr ®z, Ze(1). (1.3)
If V is any 1-dimensional f-adic representation of GG, then
V =Qe, g(e) =n(g)-e, foralged

where 1 : G — Q' is a continuous homomorphism. In the case of Ty(G,,), n
is called the cyclotomic character and usually denoted as x, the image Im(x)
is a closed subgroup of Z;'.

Remark 1.8. If K = Qq or Q, the cyclotomic character x : G — Z; is surjec-
tive.
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From Z(1) and Qg(1), we define for r € N*

Qe(r) = Symg, (Qe(1)), Qe(—r) = ZL(Q¢(r), Qr) = the dual of Q,(r).
(1.4)
Then for r € Z,

Qe(r) = Qg - t", with the action g(t") = x"(g) - t" for g € G.

Correspondingly, we have Z,(r) for r € Z. These representations are called
the Tate twists of Zy. Moreover, for any f-adic representation V, V(r) =
V ®q, Q¢(r) is the Tate twist of V.

(2). The Tate module of an elliptic curve.

Assume char K # 2,3. Let P € K[X], deg(P) = 3 such that P is separable,
then
Plz)=MX —a1)(X — a2)(X — a3)

with the roots a;, ag, as € K? all distinct. Let E be the corresponding elliptic
curve. Then

E(K?®) = {(x,y) € (K9?|y* = P(x)} U {oo}, where O = {co}.

The set E(K?) is an abelian group on which G acts. One has the exact se-
quence

0 — B (K®) — B(K*) 25 B(K®) — 0,
where for a field F over K, Epm(F) ={A € E(F) | {"A = O}. If £ # char K,
then Epn (K®) ~ (Z/("Z)?. If £ = char K, then either E(K®)pm ~ Z/0"7Z in
the ordinary case, or E(K?®)sm ~ {0} in the supersingular case.
With the transition maps

E£n+1 (Ks) — Egn (KS)
A — lA

the Tate module of E is defined as
The Tate module T;(E) is a free Zs-module of rank 2 if char K # ¢; and

1 or 0 if char K = £. Set Vy(E) = Q; ®z, T¢(E). Then V,(E) is an f-adic
representation of G of dimension 2,1, 0 respectively.
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(3). The Tate module of an abelian variety.

An abelian variety is a projective smooth variety A equipped with a group
law

Ax A— A.
Set dim A = g. We have

e A(K?) is an abelian group;
o A(K®)pm ~ (ZJIZ)* if { # charK. If { = char K, then A(K®)m ~
(Z)e"Z)", with 0 < r < g.

We get the f-adic representations:
729 if char K # /;
Ty(A) = lim A(K®)m ~ 87 ’
o(A) = lim A(K*), {z;;, “# char K — 0. (1.6)

Vi(A) = Qe ®z, Te(A).

(4). £-adic étale cohomology.

Let Y be a proper and smooth variety over K*® (here K* can be replaced by
a separably closed field). One can define for m € N the cohomology group

H™(Yet, Z/0" 7).
This is a finite abelian group killed by ¢". From the maps
H™ (Y, ZJ 0" Z) — H™(Yay, 20" Z)

we can get the inverse limit lim H™ (Yy, Z/¢"Z), which is a Z,-module of finite
type. Define
Hg (Y,Qr) = Q¢ ®z, lim H™ (Yo, Z/0"Z),

then HZ (Y, Q) is a finite dimensional Q,-vector space.

Let X be a proper and smooth variety over K, and Y = Xgs = XQ K*® =
X Xgpec k Spec(K*®). Then HZ (X ks, Qg) gives rise to an (-adic representation
of G.

For example, if X is an abelian variety of dimension g, then

HE ( Xk, Qo) = /\Q[(W(X))*~
If X = P4, then

0, if m is odd or m > 2d;
Qy (—%) , ifmiseven, 0 <m < 2d.

Hm(]P)(Ii(SaQZ) = {

Remark 1.9. This construction extends to more generality and conjecturally
to motives. To any motive M over K, one expects to associate an f-adic
realization of M to it.
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1.2 f¢-adic representations of finite fields

In this section, let K be a finite field of characteristic p with ¢ elements. Let
K* be a fixed algebraic closure of K and G = G = Gal(K*/K) ~ 7Z be the
Galois group over K. Let K,, be the unique extension of K of degree n inside
K?® forn > 1. Let 7 = <,01_(1 € G be the geometric Frobenius of G.

1.2.1 ¢-adic Galois representations of finite fields.

Recall the geometric Frobenius 75 (z) = 7 = for any € K* is a topological
generator of G. Then an f-adic representation of G is given by

p: G — Autg, (V)

T — U.

For n € Z, it is clear that p(7}) = u™. For n € Z,

ny = lim ™.
p(ri) = lim w

m—n

That is, p is uniquely determined by w.

Given any u € Autg,(V), there exists a continuous homomorphism p :
G — Autg, (V) such that p(7x) = w if and only if the above limit makes
sense.

Proposition 1.10. This is the case if and only if the eigenvalues of u in a
chosen algebraic closure of Qg are (-adic units, i.e. P,(t) = det(u—t-Idy)( €
Qe[t]) is an element of Z4[t] and the constant term is a unit.

Proof. The proof is easy and left to the readers. O

Definition 1.11. The characteristic polynomial of i, Py (t) = det(Idy —
tTi ) is called the characteristic polynomial of the representation V.

We have Py (t) = (—t)"Py (1/1).

Remark 1.12. V is semi-simple if and only if u = p(7) is semi-simple. Hence,
isomorphism classes of semi-simple ¢-adic representations V' of G are deter-
mined by Py (t).

1.2.2 ¢-adic geometric representations of finite fields.

Let X be a projective, smooth, and geometrically connected variety over K.
Let C), = Cp(X) = #X(K,,) € N be the number of K,,-rational points of X.
The zeta function of X is defined by:

Zx(t) = exp (i C;"t”) e Z[[t]). (1.7)

n=1
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Let | X| be the underlying topological space of X. If z is a closed point of | X]|,
let K (z) be the residue field of z and deg(z) = [K(x) : K]. Then Zx (¢t) has

an Euler product
1

z€|X|

z closed
Theorem 1.13 (Weil’s conjecture, proved by Deligne). Let X be a pro-
jective, smooth, and geometrically connected variety of dimension d over a
finite field K of cardinality q. Then
(1) There exist Py, P1,--- , Pag € Z[t], Prn(0) =1, such that

_ PUt)Ps(t) -+ Pag_a ()

Zx(t) = . 1.9
X = R O Paalt) (1.9)
(2) There exists a functional equation
1
Zx (— | = £¢¥t*FP Zx(t 1.10
x () = =20 (1.10)

1 2d
where f = 3 S (=1)™By, and By, = deg P,.

m=0
(3) If we make an embedding of the ring of algebraic integers Z — C, and

decompose
Bm

Pu(t) = - amjt), om;eC.
j=1
Then |am, ;| = q% .

The proof of Weil’s conjecture is why Grothendieck, M. Artin and oth-
ers ([AGV73]) developed the étale theory, although the p-adic proof of the
rationality of the zeta functions is due to Dwork [Dwo60]. One of the key
ingredients of Deligne’s proof ([Del74a, Del80]) is that for ¢ a prime num-
ber not equal to p, the characteristic polynomial of the ¢-adic representation
HE (Xke, Qo) is

Py (X s 00 (8) = Pan(2).

Remark 1.14. Consider £, E’A, two different prime numbers not equal to p. De-
note G = Gal(K*/K) ~ Z. We have the representations

p: Gx — Autg, H} (XK=, Qy),
pl G — AthzHg?(XK%Q@/)'

If Im(p) and Im(p’) are not finite, then

Im(p) ~Z; x ( finite cyclic group),
Im(p’) ~ Zy x ( finite cyclic group ).
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Definition 1.15. Let Q be an algebraic closure of Q, and w € Z. A Weil
number of weight w ( relatively to K ) is an element a € Q satisfying

(1) there exists an i € N such that ¢'a € Z;

(2) for any embedding o : Q — C, |o(a)| = ¢*/2.
« is said to be effective if o € Z.

Remark 1.16. (1) This is an intrinsic notion.
(2) If i € Z and if « is a Weil number of weight w, then ¢'a is a Weil
number of weight w + 2 ( so it is effective if i > 0 ).

Definition 1.17. An {-adic representation V of Gk is said to be pure of
weight w if all the roots of the characteristic polynomial of the geometric
Frobenius i acting on 'V are Weil numbers of weight w. Consider the char-
acteristic polynomial

Py (t) = det(1 — 7xt) ZHI—O(] EQ@H O@‘E@D@.

One says that V is effective of weight w if moreover a; € Z for 1 < j < m.

Remark 1.18. (1) Let V' be an ¢-adic representation. If V' is pure of weight w,
then V' (4) is pure of weight w — 2i. This is because Gk acts on Q(1) through
x with x(arithmetic Frobenius)= g, so x(7x) = q~!. Therefore 75 acts on
Q¢ (i) by multiplication by ¢~%. If V is pure of weight w and if i € N, i > 0,
then V(—1) is effective.

(2) The Weil Conjecture implies that V = HZ (Xks, Q) is pure and ef-
fective of weight m, and Py (t) € Q[t].

Definition 1.19. An ¢-adic representation V of Gk is said to be geometric
if the following conditions holds:
(1) it is semi-simple;
(2) it can be written as a direct sum 'V = @ Vi, with almost all Vo, =0,
wEZ
and V,, pure of weight w.

Let Repg, (G k) be the category of all f-adic representations of G, and
Repg,, geo(Gx) be the full sub-category of geometric representations. This is
a sub-Tannakian category of Repg ,(Gk), i.e. it is stable under subobjects,
quotients, @, ®, dual, and Q, is the unit representation as a geometric repre-
sentation.

We denote by Repg, gro(Grx) the smallest sub-Tannakian category of
Repg, (Gk) containing all the objects isomorphic to HE (Xxs,Qq) for X
projective smooth varieties over K and m € N. This is also the smallest
full sub-category of Repg,(Gk) containing all the objects isomorphic to
HJ(Xk=,Qp)(3) for all X,m € N,i € Z, stable under sub-objects and quo-
tients.
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Conjecture 1.20. Repg, 4o(GKr) = Repg, cro(Gk)-
Theorem 1.21. We have Repg, 4.,(Gx) € Repg, ¢ro(Gk)-

The only thing left in Conjecture 1.20 is to prove that HJ (Xgks, Q) is
geometric. We do know that it is pure of weight w, but it is not known in
general if it is semi-simple.

1.3 ¢-adic representations of local fields

1.3.1 ¢-adic representations of local fields.

Let K be a local field. Let k£ be the residue field of K, which is perfect of
characteristic p > 0. Let Og be the ring of integers of K. Let K?® be a
separable closure of K. Let G = Gal(K*®/K), Ik be the inertia subgroup of
Gk, and Py be the wild inertia subgroup of G .

We have the following exact sequences

1—>IK—>GK—> Gk —>1,

Let ¢ be a fixed prime number, ¢ # p. Then there is the following isomorphism

I /Px ~Z'(1) = [[ Ze(1) = Ze(1) x ] Ze (D).

1#p U#£ep

We define Pk ¢ to be the inverse image of He,;épEZp(l) in I, and define
Gk ¢ the quotient group to make the short exact sequences

1—) PK,f—) GK—> GK,Z_>]‘7
1—>Z5(1)—>GKJ—> Gk—> 1.

Let V be an f-adic representation of Gk, and T be the corresponding Z,-
lattice stable under G . Hence we have

Gx —> Auty, (T) ~ GLy,(Ze)

ST
Autg, (V) ~ GLp(Qe)

where h = dimg, (V). The image p(G k) is a closed subgroup of Autz, (T').
Consider the following diagram

1— N1 — GLh(Zg) — GLh(Fg) — 1,
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where Nj is the kernel of the reduction map. Let N, be the set of matrices
congruent to 1mod ¢™ for n > 1. As N;/N, is a finite group of order equal
to a power of £ for each n, Ny ~ 1i_mN1/Nn is a pro-¢ group. Since Pk ¢ is
the inverse limit of finite groups of orders prime to ¢, p(Px¢) N N1 = {1}.
Consider the exact sequence

1— Pgx — Pgy4— H Zp (1) — 1,
¢ +p, ¢

as p(Pk, ¢) injects into GLy,(Fy), p(Pk,¢) is a finite group.

Definition 1.22. Let V' be an (-adic representation of Gx with p : Gg —
Autg, (V).

(1) We say that V is unramified or has good reduction if I acts trivially.

(2) We say that V' has potentially good reduction if p(Ix) is finite, in
other words, if there exists a finite extension K' of K contained in K* such
that V', as an €-adic representation of Gxr = Gal(K*/K'), has good reduction.

(8) We say that V is semi-stable if I acts unipotently, in other words, if
the semi-simplification of V' has good reduction.

(4) We say that V is potentially semi-stable if there exists a finite exten-
sion K' of K contained in K° such that V is semi-stable as a representation
Of GK/ .

Remark 1.23. Notice that (4) is equivalent to the condition that there exists
an open subgroup of Ix which acts unipotently, or that the semi-simplification
has potentially good reduction.

Theorem 1.24. Assume that the group pryee (K(ue)) = {€ € K(pe) | I n such
that € = 1} is finite. Then any (-adic representation of Gy is potentially
semi-stable. As pyoo (k) > oo (K), this is the case if k is finite.

Proof. Replacing K by a suitable finite extension we may assume that Pg ,
acts trivially, then p factors through G ¢:

.

Gk, e

Gy P

AU-th (V)

hell

Consider the sequence
1—Zi(1) — Gg,1 — G, — 1.

Let t be a topological generator of Zy(1). So p(t) € Autg, (V). Choose a finite
extension F of Qg such that the characteristic polynomial of p(t) is a product
of polynomials of degree 1. Let V' = E®q, V. The group Gk, ¢ acts on E®g, V'
by
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gA®v) =A®g(v).

Let p: Gk, ¢ — Autg (V') be the representation over E, let a be an eigenvalue
of p(t). Then there exists v € V', v # 0 such that p(t)(v) = a - v.
If g € Gk, ¢, then gtg—' = tX¢(9) where yy : Gk,¢ — Zj is a character.

Then
[)(gtgfl)(v) =p (tXe(g)) (v) = aXxe(@y.

Therefore

pt) (g™ () =tlg™ ') = (tg™")(v) = g7 (@X*Dv) = ax 9 g1y,

This implies, if a is an eigenvalue of p(t), then for all n € Z such that there
exists g € Gk, ¢ with x¢(g) = n, a™ is also an eigenvalue of p(¢). The condition
Ppoo (K (12¢)) is finite <= Im(x,) is open in Zj}. Thus there are infinitely many
such n’s. This implies a is a root of 1. Therefore there exists an N > 1 such
that ¢V acts unipotently. The closure of the subgroup generated by ¢V acts
unipotently and is an open subgroup of Zy(1). Since Ix — Z,(1) is surjective,
the theorem now follows. O

Corollary 1.25 (Grothendieck’s /-adic monodromy Theorem). Let K
be a local field. Then any £-adic representation of Gk coming from algebraic
geometry (eg. Vi(A), H (Xk=,Qq)(3),--- ) is potentially semi-stable.

Proof. Let X be a projective and smooth variety over K. Then we can get
a field Ky which is of finite type over the prime field of K ( joined by the
coefficients of the defining equations of X). Let K; be the closure of K in
K. Then K is a complete discrete valuation field whose residue field kq is of
finite type over F,. Let ko be the radical closure of k1, and K5 be a complete
separable field contained in K and containing K, whose residue field is ks.
Then fiyoe (k2) = iy (k1), which is finite. Then

X:X()XKOK, XQZX()XKOKQ, X:XQXK2K,

where X is defined over K. The action of Gg on V' comes from the action
of Gk,, hence the corollary follows from the theorem. a

Theorem 1.26. Assume k is algebraically closed. Then any potentially semi-
stable £-adic representation of Gk comes from algebraic geometry.

Proof. We proceed the proof in two steps. First note that k is algebraically
closed implies Iy = Gg.

Step 1. At first, we assume that the Galois representation is semi-stable. Then
the action of Pk , must be trivial from above discussions, hence the repre-
sentation factors through G . Identify Gg, ¢ with Zy(1), and let ¢ be a
topological generator of this group. Let V' be such a representation:
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Gy £ Aut@e (V)

so p(t) € Autg, (V).

For each integer n > 1, there exists a unique (up to isomorphism) repre-
sentation V,, of dimension n which is semi-stable and in-decomposable. Write
it as V;, = QF, and we can assume

"
1

As 'V, ~ Sym&;l(vg), it is enough to prove that V5 comes from algebraic
geometry. Write
O—>QZ_>‘/2—>QZ_>O7

where V5 is a non-trivial extension. It is enough to produce a non-trivial
extension of two f-adic representations of dimension 1 coming from algebraic
geometry. We apply the case for some ¢ € mg, ¢ # 0. Then from Tate’s
theorem, let E be an elliptic curve over K such that E(K®) ~ (K*)*/¢%, with

E(K®)pm = {a € (K®)* | 3m € Z such that " = qm} /q["

and
Vi(E) = Qe @z, Ty(E), Ty(E) =lim E(K?)en.
An element o € Ty(FE) is given by
a = (an)nen, an € E(K%)n, afL_H = ay,.
From the exact sequence

we have

0— Q@(l) — Vg(E) — Qg — 0.

The action of G on the left Q,(1) of the above exact sequence is trivial, since
it comes from the action of unramified extensions. And the extension V;(E)
is non-trivial.

Step 2. Assume the representation is potentially semi-stable. Let V' be a po-
tentially semi-stable ¢-adic representation of G. Then there exists a finite
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extension K’ of K contained in K*® such that I = G+ acts unipotently on
V.

Let ¢ be a uniformizing parameter of K’. Let E be the Tate elliptic curve
associated to ¢ defined over K’, and let V;(E) be the semi-stable Galois rep-
resentation of G /. From the Weil scalar restriction of E, we get an abelian

variety A over K and
Vi(A) = Indgk, Vi(E).

an (-adic representation of Gk of dimension 2 - [K’ : K]. All the ¢-adic repre-
sentations of Gx, which are semi-stable /-adic representations of Gk, come
from V;(A). O

1.3.2 An alternative description of potentially semi-stable ¢-adic
representations.

Let the notations be as in the previous subsection. To any ¢ € mg, ¢ # 0, let
FE be the corresponding Tate elliptic curve. Thus

Vi(E) = Ve ((K*)" /q") = Qe ® lim ((K°)" /q") ...
Let ¢t be a generator of Q;(1). Then we have the short exact sequence
0— Q — Vi ((K)"/q%) (=1) — Qe(=1) — 0.

Write Q¢(—1) = Q- t7, and let u € V; ((K*)*/¢%) (—1) be a lifting of ¢t~1.
Put
BZ = QZ[UL
then b®t~! € By(—1) = By ®g, Q¢(—1). We define the following map
N : Bg — Bg(—l)
b — bVt = 7% @t L.

Let V be an ¢-adic representation of G g, and H be the set of open normal

subgroups of I . Define

D(V) = lim (By @, V). (1.11)
HeH

Proposition 1.27. dimg, D,(V) < dimg, V.

The map N extends to N : Dy(V) — Dy(V)(—1). And we define a
category ¥ = the category of pairs (D, N), in which

e D is an f-adic representation of G with potentially good reduction.



1.3 ¢-adic representations of local fields 59

e N:D — D(-1) is a Qg-linear map commuting with the action of G,
and is nilpotent. Here nilpotent means the following: write N(8) = N¢(6) ®
t~1, where N; : D — D, then that N; (or N) is nilpotent means that the
composition of the maps

N(=1) N(=r+1)
- 7 B

DX D(-1) D(-2) — D(—r)
is zero for r large enough. The smallest such r is called the length of D.
e Home ((D,N),(D’,N")) is the set of the maps n : D — D’ where 7 is

Qy-linear, commutes with the action of Gk, and the diagram

D/

S|

commutes.

We may view Dy as a functor from the category of ¢-adic representations
of Gk to the category . There is a functor in the other direction

Vi, :% — Repg,(Gk)-
Suppose the Galois group Gk acts diagonally on By ®q, D. Since
(Be ®q, D)(—1) = (Bt ®q, D) ®q, Qu(—1) = Be(—1) ®q, D = B, ®q, D(-1),
define the map N : By ®g, D — (Be ®qg, D)(—1) by
Nb®d§) =Nb®d+b® NJ.
Now set
V¢(D,N)=Ker (N : By ®q, D — (Br ®q, D)(-1)).
Proposition 1.28. (1) If V is any {-adic representation of Gy, then
Vie(De(V)) =V
is injective and is an isomorphism if and only if V is potentially semi-stable.
(2) Vi(D,N) is stable by Gk and dimg,V¢(D,N) = dimg,(D) and
V¢(D, N) is potentially semi-stable.
(8) Dy induces an equivalence of categories between Repg, .« (Gk), the

category of potentially semi-stable £-adic representations of Gk and the cate-
gory €, and Vy is the quasi-inverse functor of Dy.
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Proof. (1) is a consequence of a more general result (Theorem 2.13) in the next
chapter. One needs to check that By is so-called (Qy, H)-regular for H € H:
(i) whether Bff = (Frac B,)"? (ii) for a non-zero element b such that the
Qg-line generated by b is stable by H, whether b is invertible in B,? This is
easy to check: (i) Bff = (Frac B;)" = Q. (ii) b € Qy is invertible.

(2) is proved by induction to the length of D. If the length is 0, then
ND =0 and Vy(D,N) = BN=°® D = D, and the result is evident. We also
know that IV is surjective on By ® D. In general, suppose D is of length r 4 1.
Let D1y = Ker (N : D — D(—1)) and Dy = Im(N : D — D(—1), and endow
D, and D5 with the induced nilpotent map N. Then both of them are objects
in ¢, D1 is of length 0 and D5 is of length r. The exact sequence

0—Dy —D— Dy —0

induces a commutative diagram

0O —— B®Dy —— B®D —— DB®Dy ——0
o ¥ |

0 —— B/ ®Di(-1) —— By ®D(-1) —— B;® Dy(—1) —— 0

and since N is surjective on By @ D, by the snake lemma, we have an exact
sequence of Qg-vector spaces

0 — V¢(D1,N) — V(D,N) — V(Dy, N) — 0

which is compatible with the action of G. By induction, the result follows.
(3) follows from (1) and (2). O

Exercise 1.29. Let (D, N) be an object of ¢. The map

Vz(D) CBy®g, D — D
> Pi(u) ® 0 — 32, Pi(0) © 6

induces an isomorphism of Qg-vector spaces between V;(D) and D ( but it
does not commute with the action of Gk ). Describe the new action of G
on D using the old action and N.

1.3.3 The case of a finite residue field.
Assume k is a finite field with ¢ elements. We have the short exact sequence
1—Ix —Gg — G — 1,

and let 7, € G}, denote the geometric Frobenius of k. By definition, the Weil
group of k is

Wi ={g € Gk | 3m € Z such that g|; = 77"} .
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Hence there is a map
a:Wg —Z

with a(g) = m if g|; = 7", and it induces the exact sequence

1 —Ix — Wi —7 — 1.

Definition 1.30. The Weil-Deligne group of K (relative to K /K ), denoted
as WD, is the group scheme over Q which is the semi-direct product of Wk
by the additive group G, over which Wy acts by

wrw™ ' = ¢~ "W,
Definition 1.31. If E is any field of characteristic 0, a (finite dimensional)

representation of Wi (a Weil representation) of K over E is a finite dimen-
sional E-vector space D equipped with

(1) a homomorphism of groups p : Wk — Autg(D) whose kernel contains
an open subgroup of I .

A representation of WDy (a Weil-Deligne representation) is a Weil repre-
sentation equipped with

(2) a nilpotent endomorphism N of D such that
Nop(w) = ¢ p(w)o N for any w € W-.

Any /(-adic representation V' of G which has potentially good reduction
defines a continuous Q-linear representation of Wiy . As Wi is dense in G,
the action of Wg determines the action of G .

For an E-vector space D with an action of Wi, we can define D(—1) =
D®g E(—1), where E(—1) is a one-dimensional E-vector space on which Wi
acts, such that Ix acts trivially and the action of 7, is multiplication by ¢~ '.
Then an object of Repgy(WDk) is a pair (D, N) where D is an E-linear
continuous representation of Wx and N : D — D(—1) is a morphism of
E-linear representation of Wy (which implies that N is nilpotent ).

Let Repg,, pst (Gk) be the category of potentially semi-stable ¢-adic rep-
resentation of G . By results from previous subsection, we have the functor

Rep@bpst(GK) — RepE(WDK)
Vi— (D¢(V), N),

which is fully faithful.
Now consider E and F', which are two fields of characteristic 0 (for instance,
E = Qg, and F' = le). Let

— D = an FE-linear representation of WDg.
D’ = an F-linear representation of WD
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D and D’ are said to be compatible if for any field {2 and embeddings
E — and F — (2,
N ®p D~ 2 ®p D' are isomorphic as 2-linear representations of WD

Theorem 1.32. Assume that A is an abelian variety over K. If £ and £’ are
different prime numbers not equal to p, then Vp(A) and Vi (A) are compatible.

Conjecture 1.33. Let X be a projective and smooth variety over K. For any
m € N, if £, ¢’ are primes not equal to p, then

HZ (X ke, Q) and H (Xks,Qp)
are compatible.

Remark 1.34. If X has good reduction, it is known that the two representa-
tions are unramified with the same characteristic polynomials of Frobenius by
Weil’s conjecture. It is expected that 7, acts semi-simply, which would imply
the conjecture in this case.

1.3.4 Geometric ¢-adic representations of G.

In this subsection we shall describe geometric E-linear representations of
W Dy for any field F of characteristic 0. Then a geometric ¢-adic represen-
tation of Gk for £ # p is an f-adic representation such that the associated
Qg-linear representation of W D is geometric.
Let V be an E-linear continuous representation of Wy . Choose 7 € Wi a
lifting of 7%:
1—Ixg —Wg —7Z—1

T — 1.
Choose w € Z.

Definition 1.35. The representation V is pure of weight w if all the roots of
the characteristic polynomial of T acting on V' (in a chosen algebraic closure
E of E ) are Weil numbers of weight w relative to k, i.e. for any root A\, A € Q
and for any embedding o : Q — E, we have

| o(A) [=¢""2.

The definition is independent of the choices of 7 and E.
Let V be any E-linear continuous representation of Wy, and let r € N.
Set
D=VeV-1)aV(-2)a - - aV(-r)

and N : D — D(—1) given by
N(’U07’U71,’U72, T 7v77‘> = (U717U727 T 7U7T70)'

This is a representation of W Dg.



1.3 ¢-adic representations of local fields 63

Definition 1.36. An FE-linear representation of W Dk is elementary and
pure of weight w + r if it is isomorphic to such a D with V satisfying

(1) V is pure of weight w;

(2) V is semi-simple.

Definition 1.37. Let m € Z. A geometric representation of W Dg pure of
weight m is a representation which is isomorphic to a direct sum of elementary
and pure representation of weight m.

As a full sub-category of Repg(W D), these representations make an
abelian category Rep yo,(W D). For £ # p, let

Repgg, geo (GK)

be the category of pure geometric ¢-adic representation of G of weight m,
which is the category of those V' such that (D(V), N) is in Repg), g0 (W Dk )-

Congjecture 1.38. For £ # p, the f-adic representation H (X, Q) (i) should
be an object of Rep@;’zgzeo(WDK) and objects of this form should generate
the category.

In the category Repy (W Dg), let

Definition 1.39. The category of weighted E-linear representation of W Dy,
denoted as Repy(WDg), is the category with

o An object is an E-linear representation D of W Dy equipped an increasing
filtration
 CWuD C Wy DC -

where W,,, D is stable under W Dy, and

WmD=0 if m<O0.

e Morphisms are morphisms of the representations of W Dy which respect
the filtration.

This is an additive category, but not an abelian category. Define
Repfp geo (W Dk),

the category of geometric weighted E-linear representations of WDk, to be
the full sub-category of Repz (W D) of those D’s such that for all m € Z,

grmD =W, D /W, 1D
is a pure geometric representation of weight m.
Theorem 1.40. Repy ,.,(W Dk) is an abelian category.

It is expected that if M is a mized motive over K, for any £ prime number
# p, Hy(M) should be an object of Repg, yeo(Gk)-
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p-adic Representations of fields of
characteristic p

2.1 B-representations and regular G-rings

2.1.1 B-representations.

Let G be a topological group and B be a topological commutative ring
equipped with a continuous action of G compatible with the structure of
ring, that is, for all g € G, b1,bo € B

g(b1 +b2) = g(b1) + g(b2), g(b1b2) = g(b1)g(b2).

Ezample 2.1. B = L is a Galois extension of a field K, G = Gal(L/K), both
endowed with the discrete topology.

Definition 2.2. A B-representation X of G is a B-module of finite type
equipped with a semi-linear and continuous action of G, where semi-linear
means that for all g € G, A € B, and z,z1,12 € X,

g(wy +x2) = g(x1) + g(z2),  g(Ax) =g(N)g(x).

For a B-representation, if G acts trivially on B, it is just a linear represen-
tation; if B = ), endowed with the discrete topology, it is called a mod p rep-
resentation instead of a Fj,-representation; if B = Q, endowed with the p-adic
topology, it is called a p-adic representation instead of a Q,-representation.

Definition 2.3. A free B-representation of G is a B-representation such that
the underlying B-module is free.

Ezxample 2.4. Let F be a closed subfield of B¢ and V be a F-representation
of G, let X = B®p V be equipped with G-action by g(A ® z) = g(\) ® g(x),
where g € G,\ € B,x € X, then X is a free B-representation.

Definition 2.5. We say that a free B-representation X of G is trivial if one
of the following two conditions holds:

(1) There exists a basis of X consisting of elements of X©;

(2) X ~ B¢ with the natural action of G.
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We now give the classification of free B-representations of G of rank d for
deNandd>1

Assume that X is a free B-representation of G with {ey,--- ,eq} as a basis.
For every g € G, let

d
9(e;) = Zaij(g)ei7
i=1
then we get a map o : G — GL4(B),

a(g) = (ai;(9))1<i,j<a- (2.1)

It is easy to check that « is a l-cocycle in Z} (G, GL4(B)). Moreover, if
{€1,--- , €} is another basis and if P is the change of basis matrix, write

g(e)) = Zaéj(g)eé» o (9) = (ai;(9)1<ij<d;

then we have
o/(g) = P~ a(g)g(P). (2:2)
Therefore o and o are cohomologous to each other. Hence the class of o in
HL . (G,GL4(B)) is independent of the choice of the basis of X and we denote
it by [X].
Conversely, given a l-cocycle a € ZL  (G,GL4(B)), there is a unique
semi-linear action of G on X = B such that, for every g € G,

d
g(ej) = Zaij(g)eia (2.3)

and [X] is the class of a. Hence, we have the following proposition:

Proposition 2.6. Let d € N. The correspondence X — [X]| defines a bijec-
tion between the set of equivalence classes of free B-representations of G of
rank d and HY . (G,GLg(B)). Moreover X is trivial if and only if [X] is the

cont

distinguished point in HX (G, GL4(B)).
The following proposition is thus a direct result of Hilbert’s Theorem 90:

Proposition 2.7. If L is a Galois extension of K and if L is equipped with
the discrete topology, then any L-representation of Gal(L/K) is trivial.

2.1.2 Regular (F, G)-rings.

In this subsection, we let B be a topological ring, G be a topological group
which acts continuously on B. Set E = B%, and assume it is a field. Let F be
a closed subfield of E.

If B is a domain, then the action of G extends to C' = Frac B by

b1> g(b1)
— | = , forall ged, b,by € B. 2.4
g <b2 g(b2) g 1,02 ( )
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Definition 2.8. We say that B is (F,G)-regular if the following conditions
hold:

(1) B is a domain.

(2) B¢ = CC.

(3) For every b € B,b # 0 such that for any g € G, if there exists A € F
with g(b) = b, then b is invertible in B.

Remark 2.9. This is always the case when B is a field.

Let Repyr(G) denote the category of continuous F-representations of G.
This is an abelian category with additional structures:

e Tensor product: if V7 and V5 are F-representations of G, we set V] ® Vo =
Vi ®F Va2, with the G-action given by g(v; ® v2) = g(v1) ® g(v2);

e Dual representation: if V is a F-representation of G, we set V* =
Z(V,F) = {linear maps V — F}, with the G-action given by (gf)(v) =
fla7 ()

e Unit representation: this is F' with the trivial action.

We have obvious natural isomorphisms
Vio(heVs)~(Vieolh) eV, WheVi~Viel, VeF~FV~V.

With these additional structures, Repy(G) is a neutral Tannakian cate-
gory over F (ref. e.g. Deligne [Del] in the Grothendieck Festschrift, but we
are not going to use the precise definition of Tannakian categories).

Definition 2.10. A category €' is a strictly full sub-category of a category
€ if it is a full sub-category such that if X is an object of € isomorphic to an
object of €', then X € €.

Definition 2.11. A sub-Tannakian category of Repp(G) is a strictly full
sub-category €, such that

(1) The unit representation F is an object of € ;

(2) If V€ € and V' is a sub-representation of V, then V' and V/V' are
all in €;

(3) If V is an object of €, so is V*;

(4) If V1,Va € €, so is V1 @ Va;

(5) val,VQ S cg, sois Vi ® Vs.

Definition 2.12. Let V be a F-representation of G. We say V is B-admissible
if BpV is a trivial B-representation of G.

Let V be any F-representation of GG, then B ®p V, equipped with the
G-action by g(A® z) = g(\) ® g(x), is a free B-representation of G. Let

Dp(V) = (Bor V)Y, (2.5)

we get a map
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ay: BegDp(V) — BepV

AR — AT (2.6)

for A € B, z € Dp(V). ay is B-linear and commutes with the action of G,
where G acts on BRg Dg(V) via gA® z) = g(\) ® «.

Theorem 2.13. Assume that B is (F,G)-regular. Then
(1) For any F-representation V of G, the map «y is injective and
dimp Dg(V) < dimp V. We have

dimg Dg(V) =dimp V < ay is an isomorphism

. - (2.7)
<V is B-admissible.

(2) Let Rep2(G) be the full subcategory of Repp(G) consisting of these
representations V which are B-admissible. Then Rep?(G) 15 a sub-Tannakian
category of Repp(G) and the restriction of Dp (regarded as a functor from
the category Rep(G) to the category of E-vector spaces) to Rep2(G) is an
exact and faithful tensor functor, i.e., it satisfies the following three properties:

(i) Given Vi and V2 admissible, there is a natural isomorphism

D (Vi) @ Dp(V2) ~ Dp(Vi @ Va). (2.8)
(ii) Given V' admissible, there is a natural isomorphism
Dy(V*) = (Dp(V))". (2.9)
(iii) Dp(F) ~ E.

Proof. (1) Let C' = Frac B. Since B is (F,G)-regular, C = B¢ = E. We
have the following commutative diagram:

B®g DB(V) — BpV
B®gDc(V)

CRpDc(V)——=C®prV.

To prove the injectivity of ay, we are reduced to show the case when B = C
is a field. The injectivity of ay means that given h > 1, z1,...,z;, € Dg(V)
linearly independent over E, then they are linearly independent over B. We
prove it by induction on h.

The case h = 1 is trivial. We may assume h > 2. Assume that xq1, -, xp
are linearly independent over E, but not over B. Then there exist A, -+, Ap €

h
B, not all zero, such that > A\;z; = 0. By induction, the \s are all different
i=1
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from 0. Multiplying them by —1/\;,, we may assume A, = —1, then we get

h—1
xp = Y, Mz;. For any g € G,
i=1

h—1

ry = g(wp) = ZQ(M)%

then

By induction, g(X\;) = \;, for 1 <i < h—1,ie., \; € BY = E, which is a
contradiction. This finishes the proof that ay is injective.
If oy is an isomorphism, then

dimpg DB(V) =dimp V =rankg B®Qg V.

We have to prove that if dimg Dp(V) = dimp V, then ay is an isomorphism.

Suppose {v1,- -+ ,vq} is a basis of V over F, set v} = 1®wv;, then vy, --- , v}
is a basis of B ®p V over B. Let {e1, - ,eq} be a basis of Dp(V) over E.

d
Then e; = 3 b;;v;, for (b;j) € Mg(B). Let b = det(b;;), the injectivity of ay
implies b £ 0.

We need to prove b is invertible in B. Denote det V = /\jf7 V = Fuv, where
v =wv; A+ Avg. We have g(v) = n(g)v with n : G — F*. Similarly let
e=eN---Neg € /\CI{JDB(V)7 g(e) = e for g € G. We have e = bv, and
e = g(e) = g(b)n(g)v, so g(b) = n(g)~1b for all g € G, hence b is invertible in
B since B is (F, G)-regular.

The second equivalence is easy. The condition that V' is B-admissible, is
nothing but that there exists a B-basis {1, , 24} of B®&p V such that each
x; € Dp(V). Since ay (1 ® ;) = ;, and ay is always injective, the condition
is equivalent to that ay is an isomorphism.

(2) Let V be a B-admissible F-representation of G, V' be a sub-F-vector
space stable under G, set V" = V/V’, then we have exact sequences

0=V -V V"0

and
0—-BerV - BerV —->Br V"' —0.

Then we have a sequence
0— Dg(V') = Dg(V) = Dg(V") --»0 (2.10)

which is exact at Dg(V’) and at Dg(V). Let d = dimp V, d’' = dimp V',
d" = dimp V", by (1), we have
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dimgDp(V)=d, dimgDpg(V')<d, dimgDg(V")<d",

but d = d'4+d”, so we have equality everywhere, and (2.10) is exact at D (V")
too. Then the functor Dp restricted to Rep%(Q) is exact, and is also faithful
because D (V) £ 0 if V #£ 0.

Now we prove the second part of the assertion (2). (iii) is trivial. For (i),
we have a commutative diagram

X

(Berp V1) ®p (BQF V2) B®r (V1 ®F Va)

|

Dg(Vi) @ Dp(V2) - " >Dp(Vi @F V2)

where the map o is induced by Y. From the diagram o is clearly injective.
On the other hand, since V; and V5 are admissible, then

dimg Dp(V1) g Dp(V2) = dimp(B @ (V1 @F V2)) > dimg Dp(Vi ®F V2),

hence o is in fact an isomorphism.

At last for (ii), assume V is B-admissible, we need to prove that V* is
B-admissible and Dg(V*) ~ Dg(V)*.

The case dimp V = 1 is easy, since in this case V = Fv, Dg(V) = E-b®w,
and V* = Fv*, Dg(V*) = E-b~! @ v*.

If dimp V = d > 2, we use the isomorphism

(/\dF_1V) ® (det V)* ~ V*.

dF_l V' is admissible since it is just a quotient of ®iﬂ_1 V, and (det V)* is
also admissible since dimdet V =1, so V* is admissible.
To show the isomorphism Dg(V*) ~ Dg(V)*, we have a commutative
diagram
BepV*—= (BapV)*

!

Dy(V*) "= Da(V)’

where the top isomorphism follows by the admissibility of V*. Suppose f €
Dp(V*) and t € B®p V, then for g € G, go f(t) = g(f(g71(t))) = f(t). If
moreover t € Dg(V), then g(f(t)) = f(t) and hence f(t) € E. Therefore we
get the induced homomorphism 7. From the diagram 7 is clearly injective, and
since both Dp(V') and Dp(V*) have the same dimension as E-vector spaces,
7 must be an isomorphism. a
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2.2 Mod p Galois representations of fields of
characteristic p > 0

In this section, we assume that E is a field of characteristic p > 0. We choose
a separable closure E° of E and set G = Gg = Gal(E*/E). Set 0 = (A — A\P)
to be the absolute Frobenius of E.

2.2.1 Etale ¢p-modules over E.

Definition 2.14. A p-module over E is an E-vector space M together with
a map ¢ : M — M which is semi-linear with respect to the absolute Frobenius
o, i.e.,

olx+vy) =o(@)+o(y), foralxye M; (2.11)

p(Ax) = o(N)p(z) = NPp(x), forall\€ E, x € M. (2.12)

If M is an E-vector space, let M, = F,®z; M, where E is viewed as an
E-module by the Frobenius o : F — FE, which means for \,x € F and x € M,

AMp@z) =\, AQ pxr = pPA® .

M, is an E-vector space, and if {e1,--- ,eq} is a basis of M over E, then
{1®eq,---,1®eq} is a basis of M, over E. Hence we have

dimp M, = dimg M.
Our main observation is

Remark 2.15. If M is any E-vector space, giving a semi-linear map ¢ : M —
M is equivalent to giving a linear map

&: M, — M

A®x— Ap(x). (2.13)

Definition 2.16. A ¢-module M over E is étale if & : M, — M is an
isomorphism and if dimg M is finite.

Let {e1, - ,eq} be a basis of M over F, and assume

d
pej = E @ij€i,
i=1

then $(1®e;) = Zle a;;je;. Hence

M is étale <= @ is an isomorphism <= @ is injective
<= P is surjective <= M = E - (M) (2.14)
<= A = (a;;) is invertible in E.

Let ///ﬁ%E) be the category of étale p-modules over E with the morphisms
being the E-linear maps which commute with .
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Proposition 2.17. The category ///ﬁt(E) s an abelian category.

Proof. Let E[p] be the non-commutative (if E # F),) ring generated by E and
an element ¢ with the relation pA = APy, for every A € E. The category of
w-modules over E is nothing but the category of left F[p]-modules. This is
an abelian category. To prove the proposition, it is enough to check that, if
1 : My — My is a morphism of étale p-modules over E, the kernel M’ and
the cokernel M” of 1 in the category of p-modules over E are étale.

In fact, the horizontal lines of the commutative diagram

0 M<:o (M1>w (M2)<p - (M”)<p —0
N
0 M’ M, Mo M 0

are exact. By definition, #; and @, are isomorphisms, so ¢’ is injective and &
is surjective. By comparing the dimensions, both & and ¢ are isomorphisms,
hence Kern and Cokern are étale. a

The category //{f)t(E) possesses the following Tannakian structure:

e Let My, M; be two étale p-modules over E. Let My @ My = My @ M.
It is viewed as a w-module by

p(T1 @ 12) = (1) ® P(22).

One can easily check that My @ My € A5 (E).
e F is an étale p-module and for every M étale,

ME=E®M =M.

e If M is an étale p-module, assume that @ : M, = M corresponds to .
Set M* = %g(M, E), We have

b M* 5 (M) ~ (M*),,

where the second isomorphism is the canonical isomorphism since F is a
flat E-module. Then
t¢—1 . (M*)go l} M*

gives a p-module structure on M*. Moreover, if {e1, - ,e4} is a basis of
M, and {e],--- ,e}} is the dual basis of M*, then

o(e;) = Zaij% p(ef) = Z bijei

with A and B satisfying B = ‘A~!.
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2.2.2 The functor M.

Recall that

Definition 2.18. A mod p representation of G is a finite dimensional F,-
vector space V' together with a linear and continuous action of G.
Denote by Repr (G) the category of all mod p representations of G.

We know that G acts continuously on E° equipped with the discrete topol-
ogy, F, C (E*)¢ = E, and E* is (F,, G)-regular. Let V be any mod p repre-
sentation of G. By Hilbert’s Theorem 90, the E*-representation E° @, V is
trivial, thus V is always E®-admissible. Set

M(V) = Dp:(V) = (E° ®g, V)<, (2.15)
then dimp M(V) = dimg, V, and
ay: E*@pM(V) — E*®p, V

is an isomorphism.
On E*, we have the absolute Frobenius ¢(z) = 2P, which commutes with
the action of G-

o(g(x)) = g(p(x)), forallge G, x € E®
We define the Frobenius on E® ®p, V' as follows:
PARV) =N @v=0p) .
For all x € E* @, V, we have

o(g(x)) = g(p(x)), forallged,

which implies that if = is in M(V), so is ¢(z). We still denote by ¢ the
restriction of ¢ on M(V'), then we get

w: M(V) — M(V).

Proposition 2.19. If V is a mod p representation of G of dimension d, then
the map
ay: E*@pM(V) - E*®p, V

is an isomorphism, M(V) is an étale o-module over E and dimg M(V) = d.
Proof. We already know that
ay  E°®g M(V) — B* ®Fp \%4

is an isomorphism and this implies dimg M(V) = d.
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Suppose {v1,--- ,vq} is a basis of V over F,, and by abuse of notations,
write v; = 1 ® v;. Suppose {e1,-- ,eq} is a basis of M(V') over E. Then

d
€ = Zbij% for B = (bij) € GLa(E").
=1

Hence
d d
<p(ej) = Z bfjl]i = Zaijei.

i=1 i=1

Then A = (a;;) = B~'¢(B), and
det A = (det B) ™! det(p(B)) = (det B)P~! #£ 0.
This proves that M(V) is étale and hence the proposition. a
From Proposition 2.19, we thus get an additive functor

M : Repy, (G) — 45 (E). (2.16)

2.2.3 The inverse functor V.
We now define a functor
V: M (E) — Repg, (G). (2.17)
Let M be any étale p-module over E. We view E* @ M as a p-module via
P(A@z) =N ®p(z)
and define a G-action on it by
gA®x)=gA) @z, forged.

One can check that this action commutes with ¢. Set

VM) ={y e E° @ M | ¢(y) =y} = (E° @ M),_,, (2.18)
which is a sub F,-vector space stable under G.
Lemma 2.20. The natural map
ay : E°®p, V(M) — E°@p M (2.19)

A®v — AU

is injective and therefore dimg, V(M) < dimg M.
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Proof. We need to prove that if vy,--- v € V(M) are linearly independent
over [, then they are also linearly independent over £°. We use induction
on h.

The case h =1 is trivial.

Assume that A > 2, and that there exist A1, --- , A\, € E*, not all zero, such
that Z?:l Aiv; = 0. We may assume A\, = —1, then we have v, = Z?;ll Aiv;.

Since ¢(v;) = v;, we have
h—1
_E : p
vp = A; Vi,
i=1

which implies AY = \; by induction, therefore \; € F,,. O
Theorem 2.21. The functor

M : Repy, (G) — A5 (E)
1s an equivalence of Tannakian categories and

V: M5 (E) — Repy, (G)
s a quasi-inverse functor.
Proof. Let V be any mod p representation of G, then

ay : E° @ M(V) BANY ®F, V

is an isomorphism of E*-vector spaces, compatible with Frobenius and with
the action of G. We use this to identify these two terms. Then

VIM(V)) ={y € E° @5, V | o(y) =y}
Let {v1, -+ ,vq} be a basis of V. If

d d
y:Z/\i®vi:Z)\wi€E5®V,
i=1

i=1
we get p(y) = Y M v;, therefore
oy =y<= N elF <= yecV.

We have proved that V(M(V)) = V. Since V(M) # 0 if M # 0, a formal
consequence is that M is an exact and fully faithful functor inducing an equiv-
alence between Repy () and its essential image (i.e., the full subcategory of
///ﬁt(E) consisting of those M which are isomorphic to an M(V)).
We now need to show that if M is an étale p-module over F, then there
exists V such that
M ~ M(V).
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We take V = V(M), and prove that M ~ M(V(M)).
Note that

V(M) ={ve E°@rg M | p(v) =uv}
={v e Lg(M*, E°) | pv = vp}.

Let {ef, -+ ,ej} be a basis of M*, and suppose p(e;) = > bjje;, then giving
v is equivalent to giving x; = v(ef) € E®, for 1 < i < d. From

p(v(e})) = v(p(e))),
we have that

d d
p_ o) — o
T = U(i bmei) = E bijx;.
i=1 i=1

Thus
d
VM) = {1, wa) € (B |2 = 3 bijas, ¥ = 1, .
=1
Let R = E[zq,--- ,md]/(x’; - Z?:l bijxi)1<j<d, we have
V(M) = HomEfalgebra(Ry Es) (220)

Lemma 2.22. Let p be a prime number, E be a field of characteristic p, E*°
be a separable closure of E. Let B = (b;;) € GLq(E) and by,--- ,bg € E. Let

d
R=E[X1, -, Xal/(X] =D bi Xi = bjhr<j<a
=1

Then the set Homp_algebra (R, E®) has exactly p? elements.

Let’s first finish the proof of the theorem. By the lemma, V(M) has p? ele-
ments, which implies that dimg, V(M) = d. As the natural map

ay  E? ®]Fp V(M) — B QM
is injective, this is an isomorphism, and one can check that
M(V(M)) ~ M.

Moreover this is a Tannakian isomorphism: we have proven the following
isomorphisms

- M((V1® V) =M(Vi) @ M(Va),
— M(V*) = M(V)*,
M(F,) = E,
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and one can easily check that these isomorphisms are compatible with Frobe-
nius. Also we have the isomorphisms

- V(M1®M2) :V(M1)®V(M2),

- V(M*)=V(M)*

- V(E)=TF,,

and these isomorphisms are compatible with the action of G. a

Proof of Lemma 2.22. Write x; the image of X; in R for every i = 1,--- ,d.
We proceed the proof in three steps. 4

(1) First we show that dimp R = p®. It is enough to check that {z}'a%? - - -/}
with 0 <t¢; < p—1 form a basis of R over E. For m =0,1,...,d, set

Ry =E[X1, X Zb”X )1<j<m-

Then, for m > 0, R,, is the quotient of R,,_1 by the ideal generated by the
image of XP — Zgzl bimX; — by - By induction on m, we see that R,, is a free
E[Xmi1, Xmta,- -, XaJ-module with the images of {X!* X% .. X!m} with
0<t; <p-—1 as a basis.

(2) Then we prove that R is an étale E-algebra. This is equivalent to

d
Q}%/E = 0. But “Qzlz/E is generated by dxy,--- ,dzg. From 2% = ; bijz; + bj,

we have
0=pa?da; = wadz],

hence dz; = 0, since (b;;) is invertible in GL4(E).

(3) As R is étale over E, it has the form FE; x --- x E,. (see, e.g. [Mil80],
[FK88] or Illusie’s course note at Tsinghua University) where the Ej’s are
finite separable extensions of E. Set n, = [Ej : F], then p? = dimg R =

>~ ng. On the other hand, we have
k=1

HomE—algebra(Ra ES) = H HomE—algebra(Ek; ES)7
k

and for any k, there are exactly ni F-embeddings of Ej into E®. Therefore
the set Hompg_aigebra (E, E°) has p? elements. a

Remark 2.23. Suppose d > 1, A € GL4(E), we associate A with an E-vector
space M4 = E?, and equip it with a semi-linear map ¢ : M4 — My defined

by
p(Aej) = NP Z aije;
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where {e1,--- ,eq} is the canonical basis of M4. Then for any A € GL4(E),
we obtain a mod p representation V(M4) of G of dimension d.

On the other hand, if V' is any mod p representation of G of dimension d,
then there exists A € GL4(F) such that V ~ V(M4). This is because M(V)
is an étale p-module, then there is an A € GL4(E) associated with M(V),
and M(V) ~ M4. Thus V ~ V(Myu).

Moreover, if A, B € GLy4(FE), then

V(Ma) ~ V(Mg) < there exists P € GLq(FE), such that B = P~'Ap(P).
Hence, if we define an equivalence relation on GL4(E) by
A ~ B & there exists P € GLy4(E), such that B = P~'Ap(P),

then we get a bijection between the set of equivalences classes on GL4(FE) and
the set of isomorphism classes of mod p representations of G of dimension d.

2.3 p-adic Galois representations of fields of
characteristic p > 0

2.3.1 Etale ¢-modules over E£.

Let E be a field of characteristic p > 0, and E*® be a separable closure of F
with the Galois group G = Gal(E®/E). Let Repg, (G) denote the category
of p-adic representations of G.
From §0.2.4, we let Og be the Cohen ring C(E) of E and & be the field of
fractions of Og. Then
Og = lim Og /p"O¢
neN

and Og/pO¢ = E, € = Og[}%]. The field £ is of characteristic 0, with a
complete discrete valuation, whose residue field is ¥ and whose maximal ideal
is generated by p. Moreover, if £’ is another field with the same property, there
is a continuous local homomorphism ¢ : £ — &’ of valuation fields inducing
the identity on F and ¢ is always an isomorphism. If F is perfect, ¢ is unique
and Og may be identified to the ring W(E) of Witt vectors with coefficients
in E. In general, Og may be identified with a subring of W (E).

We can always provide £ with a Frobenius ¢ which is a continuous endo-
morphism sending Og into itself and inducing the absolute Frobenius x +— zP
on E. Again ¢ is unique whenever E is perfect.

For the rest of this section, we fix a choice of £ and .

Definition 2.24. (1) A y-module over Og¢ is an Og-module M equipped with
a semi-linear map ¢ : M — M, that is:

o +y) = o) +ey)
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p(Ar) = (N)p(x)
forx,ye M, A€ O¢.
(2) A p-module over £ is an E-vector space D equipped with a semi-linear
map p: D — D.

Remark 2.25. A p-module over Og¢ killed by p is just a ¢-module over E.

Set
M, = O¢ s®o, M.

As before, giving a semi-linear map ¢ : M — M is equivalent to giving a Og-
linear map @ : M, — M. Similarly if we set D, = £ ,®, D, then a semi-linear
map ¢ : D — D is equivalent to a linear map ¢ : D, — D.

Definition 2.26. (1) A p-module over Og is étale if M is an Og-module of
finite type and @ : M, — M is an isomorphism.

(2) A p-module D over £ is étale if dimg D < oo and if there exists an
Og-lattice M of D which is stable under ¢, such that M is an étale p-module
over Og.

It is easy to check that

Proposition 2.27. If M is an Og-module of finite type with an action of ¢,
then M is étale if and only if M /pM is étale as an E-module.

Recall that an Og-lattice M is a sub Og-module of finite type containing
a basis. If {e1, - ,eq} is a basis of M over Og, then it is also a basis of D
over £, and

d
pej = Zaijei7 (aij) € GLq(O¢).
=1

One sees immediately that

Proposition 2.28. The category //421: (Og) (resp. ///é%é’)) of étale p-modules
over Og (resp. £) is abelian.

Let Repg, (G) (resp. Repy (G)) be the category of p-adic representations
(resp. of Z,-representations) of G. We want to construct equivalences of cat-
egories:

D : Repg, (G) — //lﬁt(c‘f)

and )
M : Repy, (G) — MG (O¢).
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2.3.2 The field £ur

Let F be a finite extension of £, O be the ring of the integers of F. We say
F /& is unramified if

(1) p is a generator of the maximal ideal of Ox;
(2) F = Og/p is a separable extension of E.

For any homomorphism f : £ — F of fields of characteristic p, by Theo-
rem 0.43, the functoriality of Cohen rings tells us that there is a local homo-
morphism (unique up to isomorphism) C(E) — C(F') which induces f on the
residue fields.

For any finite separable extension F' of F, the inclusion £ <— F' induces
a local homomorphism C(E) — C(F), and through this homomorphism we
identify C(E) as a subring of C(F'). Then there is a unique unramified extension
F = FracC(F) of & whose residue field is F' (here unique means that if F,
F' are two such extensions, then there exists a unique isomorphism F — F’
which induces the identity on £ and on F'), and moreover there exists a unique
endomorphism ¢’ : F) — F such that ¢’ maps C(F) to itself, ¢'|¢ = ¢ and
induces the absolute Frobenius map A — AP on F. We write F = £ and still
denote ¢’ as .

Again by Theorem 0.43, this construction is functorial:

o:F — F olg=1d induces o : Er — Epr,0le =1d

and o commutes with the Frobenius map ¢. In particular, if F/F is Galois,
then £r /€ is also Galois with Galois group

Gal(Er/€) = Gal(F/E)

and the action of Gal(F/FE) commutes with .
Let E* be a separable closure of E, then

Es:UF

Fes

where S denotes the set of finite extensions of E contained in E*. If F, F' € S
and F' C I/, then Er C Epv, we set

£ = lim Ep. (2.21)
Fes

Then £ /€ is a Galois extension with Gal(E™/€) = G. Let £ be the com-

pletion of &%, and Og; be its ring of integers. Then Og; is a local ring,
and

Ogu\r = liLnOgur/p"Ogur. (222)

We have the endomorphism ¢ on £" such that ¢(Ogw) C Ogur. The

action of ¢ extends by continuity to an action on Og; and Eur, Similarly we
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have the action of G on £, Og; and £ur. Moreover the action of ( commutes

with the action of G. We have the following important facts:
Proposition 2.29. (1) (@)G =€, (Oﬁ)c = 0.
(2) (gur)sa:l = Qp; (Ogu\r)ng:l = Zp-

Proof. We regard all rings above as subrings of W (E*). The inclusion Og; —
W (E?) is G- and ¢-compatible. Since W(E?),=1 = Zj, (2) follows immedi-
ately. Since

W(E")S =W (E),

and by construction, W(E) N Ogur = Og, then W(E) N O = Og = O¢, (1)
follows. O

2.3.3 Og; and Z, representations.

Proposition 2.30. For any Og; -representation X of G, the natural map

Ogu\r R0¢ X¢ X

s an isomorphism.

Proof. We prove the isomorphism in two steps.

(1) Assume there exists n > 1 such that X is killed by p™. We prove the
proposition in this case by induction on n.

For n = 1, X is an E*-representation of G and this has been proved in
Proposition 2.7.

Assume n > 2. Let X’ be the kernel of the multiplication by p on X and
X" = X/X'. We get a short exact sequence

0—-X' —-X—>X"—-0

where X’ is killed by p and X" is killed by p”~!. Also we have a long exact
sequence
0— X% x%- X" - H}

cont

(G, X").
Since X’ is killed by p, it is just an F*-representation of G, hence it is trivial
(cf. Proposition 2.7), i.e. X’ ~ (E*)? with the natural action of G. So

Heon (G, X') = HY(G, X') = (H'(G, E*))? = 0.
Then we have the following commutative diagram:
00— Oz ®o, X'¢ — Oz ®0, X¢ —— Oz ®0, X"¢ ——0

| | |

0 X' X X" 0.

By induction, the middle map is an isomorphism.
(2) Since X = lin X/p™, the general case follows by passing to the limits.

neN
O
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Let T be a Zj,-representation of G, then Og; ®z, T is a p-module over
Og¢, with ¢ and G acting on it through

pA@t) =)@t gAet)=gX)@g(t)

forany g € G, A € Oz and t € T'. Let

gur
M(T) = (Ogm ®z, T)°, (2.23)
then by Proposition 2.30,
ar Ogu\r Ko M(T) — Ogﬁ ®ZP T (224)

is an isomorphism, which implies that M(T') is an Og-module of finite type,
and moreover M(T) is étale. Indeed, from the exact sequence 0 — T —
T — T/pT — 0, one gets the isomorphism M(T)/pM(T) = M(T/pT) as
HY(G, Oz ®z, T) = 0 by Proposition 2.30. Thus M(T) is étale if and only if
M(T/pT) is étale as a p-module over F, which is shown in Proposition 2.19.

Let M be an étale p-module over Og, and let ¢ and G act on Og; ®o, M
through g(A ® ) = g(A) @ z and p(A ® ) = p(X) @ p(z) for any g € G,
A € Ogy and x € M. Let

V(M) = {y € Og‘; Ko, M | <p(y) = y} = (Ogu\r Ko, M)cp:l . (2.25)
Proposition 2.31. For any étale p-module M over Og, the natural map
Ogu\r ®Zp V(M) — Ogu\r Ko, M

is an isomorphism.

Proof. (1) We first prove the case when M is killed by p”, for a fixed n > 1
by induction on n. For n = 1, this is the result for étale p-modules over E.
Assume n > 2. Consider the exact sequence:

0— M —M— M'—0,

where M’ is the kernel of the multiplication by p in M. Then we have an
exact sequence

OHOEQ@(’)EM/HOEQ@)OSMHOE;@QEMHHO,

Let X' = O ®0, M'; X = Og @0, M, X" = Og ®0, M', then X,_; =

V(M'), Xp=1=V(M), X7_; = V(M"). If the sequence
0— X;Zl — X1 — X;ﬁzl —0

is exact, then we can apply the same proof as the proof for the previous
proposition. So consider the exact sequence:
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0— X,y = Xpo1 — X1 2 X' /(9 - DX,

where if ¥ € Xo—1, y is the image of x in X[_,, then d(y) is the image of
(¢ — 1)(x). It is enough to check that X'/(p — 1) X’ = 0. As M’ is killed by
p, X' = E* @ M' = (E*)?, as an E*-vector space with a Frobenius. Then
X'/(p—1)X" = (E®/(p — 1)E*)?. For any b € E*, there exist a € E*, such
that a is a root of the polynomial X? — X —b,sob=a? —a = (p — 1)a €
(p—1)E*.

(2) The general case follows by passing to the limits. O

The following result is a straightforward consequence of the two previous
results and extend the analogous result in Theorem 2.21 for mod-p represen-
tations.

Theorem 2.32. The functor

M : Repy (G) — ,//lit((’)g), T — M(T)
is an equivalence of categories and

V: M5(Og) = Repy (G), M — V(M)
s a quasi-inverse functor of M.

Proof. Identify Og; ®o, M(T) with Oz @z, T through (2.24), then

V(IM(T)) =(Ogz @0 M(T))p=1 = (Ogw ®z, T)p=1

(Ogﬁr)¢:1 ®ZP T=T,

and
M(V(M)) =(Ogs ®z, V(M))F ~ (O ©0. M)

:Og-“\r ®o, M = M.

The theorem is proved.

2.3.4 p-adic representations.

If V is a p-adic representation of G, D is an étale p-module over &, let
D(V) = (£ @q, V) ,
V(D) = (£ @eD)gmr,

Theorem 2.33. (1) For any p-adic representation V' of G, D(V) is an étale
w-module over &£, and the natural map:

EW @eD(V) — % @g,V
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is an isomorphism.
(2) For any étale p-module D over £, V(D) is a p-adic representation of
G and the natural map

Eur ®q, V(D) — EW @eD

is an isomorphism.
(3) The functor )
D : Repg, (G) — MG(E)

s an equivalence of categories, and
V() — Repg, (G)
18 a quasi-inverse functor.

Proof. The proof is a formal consequence of what we did in §2.3.3 and of the
following two facts:

(i) For any p-adic representation V' of G, there exists a Z,-lattice T' stable
under G, V = Q, ®z, T'. Thus
™ @q,V = (Ogm ®z, T)[1/p], D(V)=M(T)[1/p] = € ®o. M(T).

(ii) For any étale ¢-module D over &, there exists an Og-lattice M stable
under ¢, which is an étale ¢-module over Og, D = £ ®o, M. Thus

£ @eD = (Og ®o. M)[1/p], V(D) =V(M)[1/p] = Q, ©z, V(M)
O

Remark 2.34. The category ///;’t (€) has a natural structure of a Tannakian
category, i.e. one may define a tensor product, a duality and the unit object
and they have suitable properties. For instance, if Dy, Dy are étale ¢p-modules
over &, their tensor product D1 ® Dy is D1 ®¢ Do with action of ¢: p(z1®x2) =
©(x1) ® p(x2). Then the functor M is a tensor functor, i.e. we have natural
isomorphisms

D(V1) ® D(V2) — D(V1 ® V2) and D(V*) — D(V)*.

Similarly, we have a notion of tensor product in the category ///ﬁt((’)g), two
notion of duality (one for free Og-modules, the other for p-torsion modules)
and similar natural isomorphisms.

2.3.5 Down to earth meaning of the equivalence of categories.

For any d > 1, A € GL4(O¢), let M4 = O as an Og-module, let {eq, - ,eq}
d

be the canonical basis of M4. Set p(e;) = > a;je;. Then My is an étale -
i=1

module over Og and T4 = V(M) is a Z,-representation of G. Furthermore,
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Va =Qp,®z, Ta = V(D4) is a p-adic representation of G with D4 = E7 as
an E-vector space with the same .

On the other hand, for any p-adic representation V of G of dimension
d, there exists A € GL4(O¢), such that V ~ Vy. Given A, B € GL4(O¢),
Ty is isomorphic to Tp if and only if there exists P € GLg(Og¢), such that
B = P71 Ap(P). V4 is isomorphic to Vg if and only if there exists P € GL4(€)
such that B = P~tAp(P).

Hence, if we define the equivalence relation on GL4(Og) by

A ~ B ¢ there exists P € GLy4(E), such that B = P~ Ap(P),

we get a bijection between the set of equivalence classes and the set of iso-
morphism classes of p-adic representations of G of dimension d.

Remark 2.35.1f A is in GLg(Og) and P € GLg(Og), then P~1Ap(P) €
GL4(Og). But if P € GL4(€), then P~tAp(P) may or may not be in
GL4(O¢).
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C-representations and Methods of Sen

3.1 Krasner’s Lemma and Ax-Sen’s Lemma

3.1.1 Krasner’s Lemma.

Proposition 3.1 (Krasner’s Lemma). Let F' be a complete nonarchimedean
field, and E be a closed subfield of F', let o, B € F with a separable over E.
Assume that | — a| < |&' — a| for all conjugates o’ of a over E, o/ # «.
Then o € E(f).

Proof. Let E' = E(8), v = 8 — a. Then E'(y) = E'(a), and E'(y)/E’ is
separable. We want to prove that E’(y) = E’. It suffices to prove that there
is no conjugate 7' of v over E’ distinct from ~. Let 4/ = 8 — o’ be such a
conjugate, then |v'| = |y|. It follows that |[7' —~| < |y| = |8 — «|. On the other
hand, |7 — | = |&’ — a] > |8 — a| which leads to a contradiction.

O

Corollary 3.2. Let K be a complete nonarchimedean field, K*® be a separable

closure of K, K be an algebraic closure of K containing K. Then Ks=K
and it is an algebraically closed field.

Proof. Let C = K , we shall prove:

(i) If char K = p, then for any a € C, there exists & € C, such that a? = a.
(ii) C is separably closed.

Proof of (i): Choose m € mg, m # 0. Choose v = vy, i.e., v(w) = 1. Then
Okgs = {(l e K* | ’U(a) > 0}, O¢c = @OKS/W"OKS

and C' = O¢[l/7]. Thus #™Pa € O¢ for m > 0, we may assume a € Oc¢.
Choose a sequence (ay,)nen of elements of Ok, such that a = a,, mod 7™. Let

Py(X)=X?—7"X —a, € K*[X],
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then P/ (X) = —n™ # 0 and P, is separable. Let «,, be a root of P, in K?,
ay, € Ogs. Then

n+1

D _ n
Ay —ab =7" a1 — Ty F A1 — g,

one has v(ad | —af) > n. Since (1 —an)? = b | — b, V(g1 — ) >
n/p, which implies (ay,)nen converges in Og. Call « the limit of (ay,), then

aP = 1irJIrl aP = g since v(af, — a) = v(7"ay, + a, —a) > n.
n—-—1+0oo

Proof of (ii): Let
P(X) :a0+a1X+a2X2_|_...+ad71Xd—l+Xd

be an arbitrary separable polynomial in C[X]. We need to prove P(X) has a
root in C. We may assume a; € O¢. Let C’ be the decomposition field of P
over C, let r = maxv(o; — o), where o; and «; are distinct roots of P in C".
Let

Pr=by+01X +boX?+ -+ by X+ X € K¥[X]

with b; € K*, and v(b; — a;) > rd. We know, because of part (i), that C
contains K, hence there exists 3 € C, such that P;(3) = 0. Choose a € C’, a
root of P, such that |3 — /| > |8 — af for any o/ € C’ and P(a’) = 0. Since
P(B) = P(B) — Pi(B), and v(B) > 0, we have v(P(3)) > rd. On the other
hand,

thus .,
u(P(B)) =Y (B — a;) > rd.
i=1

It follows that v(S—a) > r. Applying Krasner’s Lemma, we get « € C(8) = C.
O

3.1.2 Ax-Sen’s Lemma.

Let K be a nonarchimedean field, let E be an algebraic extension of K. For
any o containing in any separable extension of E, set

Ag(a) = min{v(a’ — a)}, (3.1)
where o' are conjugates of o over E. Then
Ap(a) = 400 if and only if a € E.

Ax-Sen’s Lemma means that if all the conjugates o’ are close to a, then
« is close to an element of F.
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Proposition 3.3 (Ax-Sen’s Lemma, Characteristic 0 case). Let K, FE,«
be as above, Assume char K = 0, then there exists a € E such that
p
(p—1)

Remark 3.4. If choose v = v, then v,(av — a) > Ag(a) — ﬁ, but Ag(a)

vla—a) > Ag(a) —

S0(0) (3.2)

is dependent of v,,.
We shall follow the proof of Ax ([Ax70]).

Lemma 3.5. Let R € E[X] be a monic polynomial of degree d > 2, such that
v(A\) > 7 for any root X\ of R in E, the algebraic closure of E. Let m € N,
with 0 < m < d, then there exists u € F, such that u is a root of R (X),
the m-th derivative of R(X), and

U(H)Zr—d ! v((d>)

—m ‘\m
Proof. Let
d .
R=(X-A)(X = X)- (X = Xg) =) b X,
i=0
then b; € Z[A1, -+ , Ag] are homogeneous of degree d—i. If follows that v(b;) >

(d —i)r. Write
—R™(X) = zd: <i>biXim = <:L) (X =) (X = p2) - (X — pa—m),

then b,, = (i)(—l)d*mulug -+ ltd—m. Hence

d—m

v(pi) = v(by) — v((i)) > (d—m)r — v(<i>)~

i=1

There exists 4, such that

o) 2= o((4))

d—m
The proof is finished. O

Proof (Proof of Proposition 3.3). For any d > 1, let I(d) be the biggest integer
i(d)
l _ 1 _ . .
I such that p' < d. Let e(d) = izg ) g Then I(d) = 0 if and only if d < p,

or if and only if e(d) = 0. We want to prove that if [F(«) : E] = d, then there
exists a € F, such that
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via —a) > Agp(a) — e(d)v(p).

This implies the proposition, since e(d) < e(d 4+ 1) and dlirf e(d) = ﬁ.

We proceed by induction on d. It is easy to check for d = 1. Now we assume
d > 2. Let P be the monic minimal polynomial of o over E. Let

R(X)=P(X +a), R™(X)=P™ (X +a).

If d is not a power of P, then d = p*n, with n prime to p, and n > 2. Otherwise
write d = p°p, s € N. Let m = p°.

Choose i as in Lemma 3.5. The roots of R are of the form o/ — « for o' a
conjugate of . Set r = Ag(«), and 8 = p + «. Then

w(B—a)>r— — v(<d>).

d—m m

As P™)(3) =0, and P(™)(X) € E[X] is of degree d — m, 3 is algebraic over
FE of degree not higher than d — m. Either § € F, then we choose a = 3, or
B ¢ E, then we choose a € E such that v(5—a) > Ag(8)—e(d—m)v(p), whose
existence is guaranteed by induction. We need to check that v(a—a) > r—e(d).

Case 1: d = p°n (n > 2), and m = p®. It is easy to verify v((i)) =
v((pp”)) =0,s0 v(p) =v(B —a)>r. If B is a conjugate of 3, ' = o/ + 1/,
then

v(B = B)=vle —atu —p) =

which implies Ag(3) > r. Hence v(8 —a) > r — e(d — p®)v(p), and
v(a —a) > min{v(a — §),v(8 —a)} > r —e(d)v(p).

Case 2: d = p°p, and m = p°. Then v((;i)) = v((p::)) = o(p), and
v(p) >r— ﬁv(p). Let 3 be any conjugate of 3, 8’ = p’ + o/, then

(B =B =v( —pt+ad —a)>7r— ps%_psv(p)v

which implies Ag(8) > r — —i——v(p). Then

p p

1

v(B—a) 21— svle) - e(p*t! -

p*)u(p) =r —e(pu(p).

Hence v(a —a) =v(a— B+ 5 —a) > r —e(d)v(p). O

Proposition 3.6 (Ax-Sen’s Lemma, Characteristic > 0 case). Assume
K, E,a as before. Assume K is perfect of characteristic p > 0, then for any
e > 0, there exists a € E, such that v(a — a) > Ag(a) —e.
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Proof. Let L = E(a), and L/E is separable. Therefore there exists ¢ € L
such that Trz,p(c) = 1. For r > 0, v(c? ") > —¢c. Let ¢ = P ', then
(Trr/p(c)?" = Trp p(c) = 1. Replacing ¢ by ¢/, we may assume v(c) > —¢.
Let

S ={o|o: L~ E be an E-embedding},

S o =Trp,p(ca) = z;ga(coz) = z;ga(c)a(oz) €E.
As 30 o(a=Trp(e) = 1, B B

v(a—a) = ”(ZS"(C)(‘“ —o(@))) =2 min{v(o(c)(a — o(a)))} = Ap(a) —c.
This completesatehe proof. 0

We give an application of Ax-Sen’s Lemma. Let K be a complete nonar-
chimedean field, K° be a separable closure of K. Let Gx = Gal(K*®/K),
C = K. The action of G k extends by continuity to C. Let H be any closed
subgroup of G, L = (K*)#, and H = Gal(K*/L). A question arises:

Question 8.7. What is CH?
If char K = p, we have K C C. Let

L4 = {z € C | there exists n, such that e L}.

Then H acts trivially on L'®d. Indeed, for any x € L', there exists n € N,
such that #?" = a € L, then for any g € H, (g(z))?" = xP", which implies

g(z) = z. Hence Lrad c CH.

Proposition 3.8. For any close subgroup H of Gk, we have

oH _ I;,\ zf char K =0, (3.3)
Lrad 4f char K = p
where L = (K*)". In particular,
G _ IﬁiK’ if char K =0, (3.4)
Krad, if char K = p.

Proof. If char K = p, we have a diagram:

K c(km =R (Kmy—gmc  C

Gk Gk Gk

K c  Krad c Forad
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with Krad perfect. This allows us to replace K by K24, thus we may assume

that K is perfect, in which case Lrad = E, the proposition is reduced to the
claim that CH = L.

If char K = p, we choose any ¢ > 0. If char K = 0, we choose ¢ =
ﬁv(p). For any o« € CH, we want to prove that & € L. We choose a

sequence of elements «,, € K such that v(a — a;,) > n, it follows that
v(g(an) - an) 2 min{v(g(an - a))vv(an - a)} 2 n,

for any g € H. Thus Ap(«,) > n, which implies that there exists a,, € L,
such that v(a, —ap) >n—¢,and lim a, =« € L. O

n—-+4oo

3.2 Classification of C-representations

Let K be a p-adic field. Let G = G = Gal(K/K). Let v = v, be the valuation

of K and its extensions such that v(p) = 1. Let C = K.

We fix Koo, a ramified Z,-extension of K contained in K. Let H = Gk_ =
Gal(K/Ky). Let I' = Iy = Gal(Kw/K) = Z,. Let [, = I'*" and K,,, =
KIm be the subfield of K, fixed by I},. Let v be a topological generator of
I" and let 7, =~?", which is a topological generator of I5;,.

For any subfield F' of C, let F' be its closure in C. We assume the fields
considered in this section are endowed with the natural p-adic topology.

We first study the cohomology group HL (G, GL,(C)).

3.2.1 Almost étale descent.

Lemma 3.9. Let Hy be an open subgroup of H and U be a cocycle Hy —
GL,,(C) such that v(U, — 1) > a, a > 0 for all o € Hy. Then there exists a
matric M € GL,(C), v(M — 1) > a/2, such that

(M 'U,a(M)—1)>a+1, forallo € H,y.

Proof. The proof is imitating the proof of Hilbert’s Theorem 90 (Theo-
rem 0.108).

Fix Hy C Hy open and normal such that v(U,—1) > a+1+a/2 for o € Hy,
which is possible by continuity. By Corollary 0.89, we can find o € C*1 such

that
v(a) = —a/2, Z T(a) = 1.
TEHy/H;
Let S C H be a set of representatives of Hy/Hy, denote Mg = > o(a)U,, we

o€S
have Mg —1= Y o(a)(U, —1), this implies v(Mg — 1) > a/2 and moreover
ocesS
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“+oo
Mgt =Y "(1- M),

n=0

so we have v(Mg') > 0 and Mg € GL,(C).

If 7 € Hy, then Uy, — U, = Uy (0(U;) — 1). Let S’ C Hy be another set of
representatives of Hy/H, so for any o’ € S’, there exists 7 € Hy and o € S
such that ¢’ = o7, so we get

Mg — Mg = Z o(a)(Uy —Uyr) = Z o(a)Uys(1 = o(U,)),
o€sS oceS
thus
v(Mg —Mg)2a+1+a/2—a/2=a+1.
For any 7 € Hy,

U, 7(Mg) = Z To(a)U,7(Uy) = M, s.

Then

MU, 7(Mg) =1+ Mg (M,s — Ms),
with v(Mg'(Mys — Mg)) > a + 1. Take M = Mg for any S, we get the
result. a

Corollary 3.10. Under the same hypotheses as the above lemma, there exists
M € GL,,(C) such that

v(M —1)>a/2, M 'U,o0(M) =1, for allc € Hy.
Proof. Repeat the lemma (a — a+1+— a+2+— ---), and take the limits. O
Proposition 3.11. H! . (H,GL,(C)) = 1.

cont

Proof. We need to show that any given cocycle U on H with values in GL,,(C)
is trivial. Pick a > 0, by continuity, we can choose an open normal subgroup
Hy of H such that v(U, — 1) > a for any 0 € Hy. By Corollary 3.10, the
restriction of U on Hj is trivial. By the inflation-restriction sequence

1— H!

cont(H/HO’ GLYL(OHO)) - Hclont(H7 GL'VL(C)) - H&ont(Hm GLH(C))’
since H/H, is finite, by Hilbert Theorem 90, H} .(H/Hy, GL,,(CH0)) is triv-

cont
ial, as a consequence U is also trivial. a

Proposition 3.12. The inflation map gives a bijection

jiHL (I GLy(Ks)) = HY (G, GL,(C)). (3.5)

cont cont

Proof. This follows from the exact inflation-restriction sequence

(I GLa(C™)) = Heony (G, GLa(C)) = Hegny (H, GLn (C)),

cont cont

1— H!

cont

since the third term is trivial by the previous Proposition, IA(OO = CH, and
the inflation map is injective. O
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3.2.2 Decompletion.

Recall by Corollary 0.92 and Proposition 0.97, for Tate’s normalized trace
map R, (x), we have constants ¢, d independent of 7, such that

~

v(R.(x)) >v(z)—¢c, 7€ Ky (3.6)
and
(e =) 'z) > v(z) —d, z€X,={r€e Ky |Rn(x)=0} (3.7

Lemma 3.13. Given § > 0, b > 2c¢ + 2d + 6. Given r > 0. Suppose U =
14 Uy + Uy with

U, € Mn(KT»),U(Ul) >b—c—d
U, € Mn(C),’U(Ug) > o > b.

Then, there exists M € GL,,(C),v(M — 1) > b — ¢ — d such that
M7 U~ (M) =1+ V; + Vs,
with

Vi€ My(Ky), v(Vi) >2b—c—d,
Va € M, (C), v(Va) > b +6.

Proof. One has Us = R, (Us) + (1 — v,)V such that
v(R-(U2)) > v(U2) —¢, v(V)>v(Us)—c—d.
Thus,

A+V) U0+ V) =1 =V +VZ2 = YA+ Uy +Up)(1 4+ 7,.(V))
=14U; + (v — 1)V + Uy + (terms of degree > 2).

Let Vi = Uy + R, (Uz2) € M, (K,) and W be the terms of degree > 2. Thus
v(W)>b+V —2c—2d >V +5. So we can take M =14V, Vo =W. O

Corollary 3.14. Keep the same hypotheses as in Lemma 3.15. Then there
exists M € GL,(Kw), v(M—1) > b—c—d such that M ~U~,. (M) € GL,(K,).

Proof. Repeat the lemma (b+— b+0 +— b+2§ +— ---), and take the limit. O

Lemma 3.15. Suppose B € GL,(C). If there exist V1,V € GL,(K;) such
that for some r > i,

v(Vi—=1)>d, v(Va—1)>d, ~.(B)=ViBV,

then B € GL, (K;).
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Proof. Take C = B — R;(B). We have to show that C' = 0. Note that C has
coefficients in X; = (1 — R;) K, and R; is K;-linear and commutes with ~,,
thus,

¥ (C) = C=VCVy —=C = (Vi =1)CVa + V1C(Va — 1) — (V1 = 1)C(Va — 1)

Hence, v(7,-(C)—C) > v(C)+d. By Proposition 0.97, this implies v(C) = +oo0,
ie. C=0. ad

Proposition 3.16. The inclusion GL, (K ) — GLn(I?OO) induces a bijec-
tion

i HE (5, GLy (Koo)) = HL (1 QL (Koo)

(

)-
Moreover, for any o — U, a continuous cocycle of HL . (I', GL ( 00))s if
v(Us —1) > 2¢+2d for o € I, then there exists M € GL,(Kx), v(M —1) >
c+ d such that
or— U, =M 'U,o(M)

satisfies U € GL,(K,).

Proof. We first prove injectivity. Let U, U’ be cocycles of I" in GL,,(K,) and
suppose they become cohomologous in GLn(IA(OO), that is, there is an M €
GL, (K ) such that M~U,o(M) = U, for all & € I'. In particular, y,(M) =
U, M U., . Pick r large enough such that U, and U satisfy the conditions
in Lemma 3.15, then M € GL,(K,). Thus U and U’ are cohomologous in
GL,,(K), and injectivity is proved.

We now prove surjectivity. Given U, a cocycle of I" in GLn(IA(OO), by con-
tinuity there exists an r such that for all o € I'., we have v(U, — 1) > 2¢+2d.
By Corollary 3.14, there exists M € GL,(C), v(M — 1) > ¢ + d such that
U, = M~'U,~(M) € GL,(K,). Moreover, we have M € GL,(Ku) by
using Lemma 3.15 again.

Put U, = M~'U,o(M) for all o € I'. For any such o we have

Uyo(US,) = Uy, = U, » = US 7 (Ug),
which implies ~,.(U,) = U,~'Ulo(U! ). Apply Lemma 3.15 with V; =
U~ Vy = o(U), then U, € GL,,(K,).
The last part follows from the proof of surjectivity. O
Theorem 3.17. the map
Hclont(Fa GL”(KOO)) - H(}ont(G’ GLTL(C))

induced by G — I' and GL,(K) — GL,(C) is a bijection.
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3.2.3 Study of C-representations.

by Proposition 2.6, if L/K is a Galois extension, we know that there is a one-
one correspondence between the elements of Hl . (Gal(L/K),GL, (L)) and
the isomorphism classes of L-representations of dimension n of Gal(L/K).
Thus we can reformulate the results in the previous subsections in the language
of C-representations.

Let W be a C-representation of G of dimension n. Let

/V[Z)o:WHz{w|wEVV, o(w) =w for all o € H}.

Itisa I?Oo—vector space since CH = I?Oo. One has:

Theorem 3.18. The natural map
/Woc Ok.. cC —Ww
is an isomorphism.
Proof. This is a reformulation of Proposition 3.11. O

Theorem 3.19. There exists 7 € N and a K,.-representation W,. of dimension
n, such that R -
W, ®k, K = Weo-

Proof. This is a reformulation of Proposition 3.16. Let {e1,-- , e, } be a basis

~

of W, the associated cocycle o — U, in H} (I GL,(K)) is cohomologous
to a cocycle with values in GL, (K,.) for r sufficiently large. Thus there exists
a basis {e}, -+ , e}, } of Wy, such that W, = K,e] @ --- @ K,e], is invariant
by I a

From now on, we identify W, ®, IA(OO with WOO and W, with W,. ® 1 in

—

We.

Definition 3.20. We call a vector w € ﬁ/\oo K-finite if its translate by I’
generates a K-vector space of finite dimension. Let Wy, be the set of all K-
finite vectors.

By definition, one sees easily that W, is a K.,-subspace of /Woo on which
I" acts. Moreover, W, is a subset of W.

Corollary 3.21. One has W, @k, Koo = Wso, and hence W Qx_, I?oo o
W

Proof. Certainly W, ®k, Koo C Wy is a sub Ko.-vector space of W.
On the other hand the dimension of W, ®k, K is n, and dimg, We <
dim R We =n. O
Remark 3.22. The set W,. depends on the choice of basis and is not canonical,
but W, is canonical.
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3.2.4 Sen’s operator O.

Given a C-representation W of G, let W,., W, be given as above. By Propo-
sition 3.16, there is a basis {e1, - ,e,} of W, (over K,.) which is also a basis
of W, (over Ky ) and of W (over C). We fix this basis. Under this basis,
p(vr) = U, € GL,(K,) satisfies v(U,, — 1) > c+d.

We denote by log oy the composite map G — I' = Z,, and its restriction
on I'. This notation seems odd here, but one sees that the composite map
G — Zyp =P Zy, is nothing but x, which will be consistent with the axiomatic
setup in §3.4.

Definition 3.23. The operator © of Sen associated to the C-representation

is an endomorphism of W, whose matriz under the basis {e1, - ,en} is given
by
log U.
O=_2"0 (3.8)
log x(7r)

One extends © by linearity to an endomorphism of W, and of W.

Theorem 3.24. Sen’s operator © is the unique K. -linear endomorphism of
Woo such that, for every w € W, there is an open subgroup I, of I' satisfying

o(w) = [exp(©log x(0))|w, forallo € I,. (3.9)

Proof. For w = A\e; + -+ A\pe, € Wy such that \; € K, then )\; is fixed by
some [, forr; e N.Let I', =I,.NI, N---NI, . Then forany o €, C I,
o =1y, a € Zp, hence

Us = (U’)'r)a and log x(o) = alog x(vr),
then

log U.
% log x(%)) = explogU, = U,.

exp(©log x(0)) = exp (a
(©logx(0)) e

Thus
o(w) = [exp(©log x(0))|w, forall o e I,.

To prove the uniqueness, if (3.9) holds, let o € I N [, N---N I, , write
o =~%. For w € W, on one hand, the action of o on w is given by U, under
the basis {e1, - ,e,}; on the other hand, it is given by [exp(© log x(0))](w),
80
Us = U, = exp(©log x(0)),

hence
__alogU,,  logU,,

~ logx(o)  logx(w)
We have finished the proof. O
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We have the following remarks of ©:
Remark 3.25. (1) By the proof of the theorem, one sees that

log U,
6= L, for any o € I, (3.10)
log x()

thus Sen’s operator © does not depend on the choice of ~;.
(2) By (3.9), one has

1 t _
Ow)=+—— lim M, for w € W. (3.11)
logx(7)  tmo,, 1

Thus I' commutes with © on W, and G commutes with © on W.

(3) For w € Wy, O(w) = 0 if and only if the I'-orbit of w is finite (this
is also equivalent to that the stabilizer of w is an open subgroup of I'), as is
easily seen from (2).

(4) Let W' be another C-representation and ©' be the corresponding Sen
operator. Then the Sen operator for W @ W’ is © @ ©’ and for W ®@¢ W’ is
O®1+1® 0O If W is a subrepresentation of W then the Sen operator ©’
is the restriction of © to W’. These could be seen from definition or by (2).

(5) The Sen operator of the representation Home (W, W) is given by f —
fo®—0"o f for f € Homg(W, W'). To see this, use the Taylor expansion at
t=20:

Yy w) = f(w) = (1 +tlogy) f((1 — tlogy)w) + O(t?) f (w) — f(w)
= t(log7) f(w) — tf((log7)w) + O(t?) f(w),

now use (2) to conclude.

Ezample 3.26. Suppose W is of dimension 1 and there is e # 0 in W such
that o(e) = x(0)® for all ¢ € G (in this case W is called of Hodge-Tate type
of dimension 1 and weight i in § 5.1). Then e € W, and v'(e) = x(7)e,
from this we have (v*(e) —e)/t — log x(7)ie. Therefore the operator © is just
multiplication by i. This example also shows that K-finite elements can have
infinite y-orbits.

Now let us study more properties about Sen’s operator O.

Proposition 3.27. There exists a basis of Wy, with respect to which the ma-
triz of © has coefficients in K.

Proof. For any o € I'; we know 00 = Oc in W, thus U,o(0©) = OU, and
hence © and ¢(©) are similar to each other. Thus all invariant factors of ©
are inside K. By linear algebra, © is similar to a matrix with coefficients in
K and we have the proposition. a
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Remark 3.28. Since locally U, is determined by ©, the K-vector space gener-
ated by the basis as given in the above proposition is stable under the action
of an open subgroup of I'.

Theorem 3.29. The kernel of © is the C-subspace of W generated by the
elements invariant under G, i.e. WE @ C = Ker ©.

Proof. Obviously every elements invariant under G is killed by ©. Now let
X be the kernel of ©. It remains to show that X is generated by elements
fixed by G. Since © and G commute, X is stable under G and thus is a C-
representation. Therefore we can talk about X... Since X ® k. C' = X and
O is extended to X by linearity, it is enough to find a K-basis {e1, - ,e,}
of X, such that e;'s are fixed by I'. If w € X, then I'-orbit of w is finite
(by Remark 3.25 (2)). The action of I" on X, is therefore continuous for the
discrete topology of X,. So by Hilbert’s theorem 90, there exists a basis of
{e1, -+ ,en} of X fixed by I. O

Theorem 3.30. Let W' and W?2 be two C-representations, and ©' and ©2 be
the corresponding operators. For W' and W? to be isomorphic it is necessary
and sufficient that ©' and ©? should be similar.

Proof. Let W = Hom¢ (W1, W?) with the usual action of G and © be its Sen
operator. The G-representations W' and W? are isomorphic means that there
is a C-vector space isomorphism F : W' — W? such that

colF =Foo

for all ¢ € G, so ' € W&. The operators ©' and ©? are similar means that
there is an isomorphism f : W' — W? as C-vector spaces such that

0o f=fo0,

that is f € Ker®. By Theorem 3.29, W& @ C = Ker©, we see that the
necessity is obvious. For sufficiency, it amounts to that given an isomorphism
f € WE ®g C, we have to find an isomorphism F € W&,

Choose a K-basis {f1,---, fm} of W&. The existence of the isomorphism
f shows that there are scalars ¢y, -+ , ¢, € C such that:

det(cifi + -+ cmfm) # 0.

Here f; is the matrix of f; with respect to some fixed basis of W' and W?2.
In particular the polynomial det(t;f; + --- + t,,fm) in the indeterminates
t1,--- ,t, cannot be identically zero. Since the field K is infinite, there exist
elements \; € K with

det()\lfl + -+ )\m.fm) £ 0.

The homomorphism F = A\ f1 + - -+ + A\, frm then has the required property.
O
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3.3 Sen’s operator ® and the Lie algebra of p(G).

3.3.1 Main Theorem.

Given a Qp-representation V', let p : Gx — Autg, V' be the corresponding
homomorphism. Let W =V ®q, C. Then some connection of the Lie group
p(G) and the operator © of W is expected. When the residue field k of K is
algebraically closed, the connection is given by the following theorem of Sen:

Theorem 3.31. The Lie algebra g of p(G) is the smallest of the Qp-subspaces
S of Endg, V' such that © € S ®q, C.

Proof. Suppose dimg, V' = d. Choose a Qp-basis {eq,---,eq} of V and let
U, be the matrix of p(c) with respect to the e;’s. Let {e},--- , e/} be a basis
of Wy (where W =V ®¢q, C) such that the K-subspace generated by the
€’s is stable under an open subgroup I, of I' (by Proposition 3.27, such
a basis exists). If U’ is the cocycle corresponding to the e}’s, it follows that
U/ € GL4(K) for o € I},,. Let M be the matrix transforming the e;’s into the
ei’s, one then has M ~*U,0(M) = U, for all o € G.

Let © be the matrix of © with respect to the e}’s. Put A = MOM™!,
so that A is the matrix of ©® with respect to the e;’s. For o close to 1 in I’
one knows that U, = exp(©log x(0)), and our assumptions imply that © has
coefficients in K.

By duality the theorem is nothing but the assertion that a Q,-linear form
f vanishes on g <= the C-extension of f vanishes on ©. By the local home-
omorphism between a Lie group and its Lie algebra, g is the Q,-subspace of
Endg, V' generated by the logarithms of the elements in any small enough
neighborhood of 1 in p(G), for example the one given by U, = 1(mod p™) for
m 2 2. Thus it suffices to prove, for any m > 2:

Claim: f(A4) =0 < f(logU,) =0 for all U, = 1(mod p™).
Let
G,={0ce€G|U, =1 and O log x(c) =0(modp™)}, n> 2. (3.12)
Let -
Goo=[)Gn=1{0€G|U,=1and x(o) =1}. (3.13)
n=2
v v v
Let G = G2 /G and Gy, = Gy /G oo for m 2 2. Then G is a p-adic Lie group

v —
and {G,,} is a Lie filtration of it. Let L be the fixed field of G in K, by

Proposition 3.8, the fixed field of G, in C is E, the completion of L. It is clear
that for ¢ € G we have M~1o(M) = I, it follows that M has coefficients
in L, hence the same to A. From now on we work within L, and o will be a

v
(variable) element of G.
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Assume ng is an integer large enough such that n > ng implies the formula

\%
Ul = exp(O log x(0)) for all 0 € G,,. (3.14)

The statement of our theorem is unchanged if we multiply M by a power of p.
We may therefore suppose that M has integral coefficients. After multiplying
f by a power of p we may assume that f is “integral”’, i.e., takes integral
values on integral matrices.

For n > ng, U, = I'mod p™, the equation

MU, = U,o(M) (3.15)

Vv
shows then that (M) = M (modp") for o € G,,. By Ax-Sen’s lemma (Propo-
sition 3.3) it follows that for each n there is a matrix M,, such that

v
M, = M(mod p" 1), and o(M,,) = M, for o € G,,. (3.16)

Now suppose o € én, with n = 2. We then have
Uy =1+1logU,, and U, = I +logU, = I +logx(c)-© (modp*").
Substituting these congruences in (3.15) we get
M + MlogU, = (M) +log x(c) - O (M)(mod p*™).
Since log U, and log x (o) are divisible by p™ we have by (3.16):
M + M, logU, = o(M) + log x(c) - @M, ( mod p*"~1). (3.17)

Let r; and rp be integers such that p™*~'M~! and p™2© have integral coef-
ficients. Let n > 7 := 2r; + ro — 1. Then M,, is invertible and p™ ~1 M, ! is
integral. Multiplying (3.17) on the left by p"* =1 M1 and dividing by p™~!
we get

Cp +logU, = 0(C,,) +log x(0) - M;*OM, (modp®"~ ™) (3.18)
where C,, = M, 'M = I(modp"~"). Write A, = M, ©OM, !, it is fixed by

Vv

G, and
A, — A= M,0O(M (M — M,)M; ")+ (M, — M)OM ™' = 0mod p"~".

We get

2nfr)'

log x(0)A,, = log x(c)A(modp

Then we have

(0 —1)C,, =logU, — log x(0) - An( modp2n—r1).
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Applying f to the above equation, note that f is an extension of some linear
form on My(Q,), we get

(U - 1)f(cn) = f(log Ua) — logx(o—) . f(An)(mOdpQ"_Tl)

and hence

(0 = 1)f(Cn) = flogUy) —log x(0) - f(A)(modp>" 7). (3.19)

We need the following important lemma, whose proof will be given in next
section.

Lemma 3.32. Let G = Gal(L/K) be a p-adic Lie group, {G(n)} be a p-
adic Lie filtration on it. Suppose for some n there is a continuous function
A:G(n) — Q, and an element = in the completion of L such that

AMo) = (0 — Dz(modp™), for all o € G(n)
and some m € Z. Then there exists a constant c such that
Ao) = 0(mod p™ =71, for all o € G(n).

Suppose f(A) = 0. By (3.19) and Lemma 3.32, we conclude that f(logU,) =
0(mod p?"~"=¢~1) for any o € én, where c¢ is the constant of the lemma
(which depends only on (v¥) Since o?" " € én and logU_,n—> = p"2log U,
for any o € é We conclude that f(logU,) = 0(mod p"~"~¢*t1) for all o € é,
hence f(logU,) = 0 as desired, since n was arbitrary.

v

Suppose f(logU,) =0 for all 0 € G : We wish to show f(A) = 0. Suppose
not, then f(A,) # 0 and has constant ordinal for large n, dividing (3.19) by
f(A) and using Lemma 3.32, we obtain

2n—r—c—1—s)

log x(o) = 0(modp

\
for large n and all ¢ € G, where s is a constant with p®f(A)~! integral.

v
Analogous argument as above shows that log x(c) = 0 for all o € G. This is
a contradiction since, as is well known, x is a non-trivial representation with
infinite image. This concludes the proof of the main theorem. O

Corollary 3.33. © =0 if and only if p(G) is finite.

Proof. By the theorem © = 0 < g = 0. So we only need to show g = 0 < p(G)
is finite.

The sufficiency is obvious. For the necessity, g = 0 implies that p(G) has
a trivial open subgroup which in turn implies that p(G) is finite. O

Remark 3.84. In general if k is not algebraically closed, one just needs to
replace G by the inertia subgroup and K by the completion of K", then the
above theorem and corollary still hold.
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3.3.2 Application of Sen’s filtration Theorem.
We assume £k is algebraically closed.

Lemma 3.35. Let L/K be finite cyclic of p-power degree with Galois group
A= Gal(L/K). Suppose vy > ea(r+1/(p—1)) for some integer r > 0. Then
p" divides the different Dy, .

Proof. Let p" = [L : K], and for 0 < i <n, let A(;) be the subgroup of order
p’in A, so A = A(n) D A(n—l) 2D A(l) D A(o) = 1. Let v; = VAJA @y
From Corollary 0.80, we get by induction on j:

1
vj—vA—jeA>(r—j+1)eA, for 0 <j <
p—

By Herbrand’s theorem, we have

AUZA(j), for v; <V < V-1, 1<5<.

Then
1 > v|—1
(D) =— [ (1 —[A"7")dv
€A 1
21(/vr(1—|A“|_1)dU+i(1—1.)6A)
€A NS = P’
1 1 1
>—((1-p" —esr Y —
_€A<( p )pileA-‘rTeA €A ;p])
>r.
Hence p" divides the different D k. a

Proposition 3.36. Suppose G = Gal(L/K) is a p-adic Lie group and that
{G(n)} is the Lie filtration of G. Let K,, be the fixed field of G(n). Then there
is a constant c independent of n such that for every finite cyclic extension
E/K, such that E C L, the different D, is divisible by p~°[E : Ky].

Proof. Put u, = ug/gn),Vn = VYa/am), and e, = eg(y). From Proposi-
tion 0.84, we know that there exists a constant a such that

v, = a+ne for n large.

By the filtration theorem (Theorem 0.85), we can find an integer b large
enough such that
Gt 5 G(n +b)

for n large.
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Let E/K,, be cyclic of degree p* and n large. Let Gal(E/K,,) = G(n)/H =
A. We have G(n + s — 1) = G(n)?" ¢ H because AP £ 1. Thus, if
G(n)Y D G(n+s—1), then us >y, because AY = G(n)VH/H # 1.

By Proposition 0.83, we have, for ¢t > 0, with the above choice of a and b:

G(n)untton = GUntte = G*HIMDE S Gn + L+ b).
Ifs>b+1,putt=s—>b—1, then we get v4 > y as above, with
y=up,+(s—b—1)e, >(s—=b—=3+1/(p—1))e,.

Soif s > b+3, then p°~=3 = p~ (I [E : K] divides Dg/K, by Lemma 3.35.
The same is trivially true if s < b+ 3. Thus one could take ¢ = b+ 3 for large
n, say n > ny, and ¢ = ny + b+ 3 would then work for all n. a

Corollary 3.37. Trg/k, (Op) C p™°[E : K,|Ok,,.

Proof. Let [K : K,] = p°. The proposition states that Dp,r, C p° °Op,
hence O C pS*CQ}E} .- On taking the trace the corollary follows. O

We now come to the proof of Lemma 3.32:

Proof (Proof of Lemma 8.32). Multiplying A and x by p~™ we may assume
m = 0. Let A : G(n) — Q,/Z, be the function A(c) = A(c) + Z,,. Following
A by the inclusion Qp/Z, — L/Oy, we see that X is a 1-coboundary, hence a
1-cocycle, and thus a homomorphism, because G(n) acts trivially on Q,/Z,.

Let H = Ker A\ and F be the fixed field of H. For ¢ € H we have (o —
Dz € @L, by Ax-Sen’s Lemma, there exists an element y € E such that
y = 2z(mod p~!). Then

Mo)=(c—1)z=(c—1)y (modp '), for o € G(n).

Select o9 € G, such that oo H generates G(n)/H. Let

Moo) = (o0 — Dy +p 'z

Then z € Op. Taking the trace from E to K,, we find, using the Corol-
lary 3.37, that
[E: Ku)\o0) €p“ HE : K,)Ok,,

i.e. A(0p) = 0(mod p~©~1) and hence \(¢) = 0(mod p~¢~1) for all o € G(n),
as was to be shown. O

3.4 Sen’s method.

The method of Sen to classify C-representations in § 3.2 actually can be
generalized to an axiomatic set-up, as proposed by Colmez.
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3.4.1 Tate-Sen’s conditions (TS1), (TS2) and (TS3).

Let Go be a profinite group and x : Go — Zj;, be a continuous group homo-

morphism with open image. Set v(g) = v,(log x(g)) and Hy = Ker x.
Suppose A is a Z,-algebra and

v: A — RU{+o0}
satisfies the following conditions:
(i) v(z) = 400 if and only if x = 0;
(i) v(zy) = v(z) + v(Y);
(ili) v(z +y) = min(v(z),v(y));
(iv) v(p) > 0, v(px) = v(p) + v(x).

Assume A is complete for v, and G acts continuously on Asuch that v(g(z)) =
v(z) for all g € Gp and z € A.

Definition 3.38. The Tate-Sen’s conditions for the quadruple (Gmx,/I,v)
are the following three conditions (T'S1)-(TS3).

(TS1). For all Cy >0, for all Hy C Hy C Hy open subgroups, there exists an
a € AT with
v(a) > —C1 and Z T(a) = 1. (3.20)

TEHy/Hy
(In Faltings’ terminology, A/ A™o is called almost étale.)
(TS2). Tate’s normalized trace maps: there ezists a constant Cy > 0 such that

for all open subgroups H C Hy, there exist n(H) € N and (Agn)n>n(m), an
increasing sequence of sub Z,-algebras of AT and maps

Ry AT — Ag,
satisfying the following conditions:

(a) if H C Ha, then Ag, », = (AH”L)H% and Ry, n = Rpyn on /IH2;
(b) for all g € Gy, then

g(AH,n):AgHg_l,n gORH,n:RgHg—l,nog;

(c) Ry p is App-linear and is equal to identity on A p;
(d) v(Rpn(x)) > v(z) = Ca if n > n(H) and x € AM;
(e) hIJIrl Ry n(z) = .

(TS8). There exists a constant Cs, such that for all open subgroups G C G,
H = G N Ho, there exists n(G) > n(H) such that if n > n(G), v € G/H and
n(y) = vp(log x(v)) < n, then v —1 is invertible on Xg n = (R, —1)A and

v((y—1)"t) > v(z) — Cs (3.21)

forx € Xgp.
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Remark 3.39. Ry © Ry = Ry 50 A = Aprpy @ Xpp.

Ezample 3.40. In § 3.2, we are in the case A = C, Gy = Gk, v = vp, X being
the character Gy — I' =5 /e

In this case we have Hy = Gal(K/K,). For any open subgroup H of Hy,
let Lo = FH, then L., = LK, for L disjoint from K, over K, for n > 0.
Let Ay, = L, = LK,, and Ry, be Tate’s normalized trace map. Then all
the axioms (TS1), (TS2) and (TS3) are satisfied from results in § 0.4.2.

3.4.2 Almost étale descent

Lemma 3.41. If A satisfies (TS1), a >0, and o — U, is a 1-cocycle from
H, an open subgroup of Hy, to GL4(A), and

v(Uy —1) > a for any o € H,
then there exists M € GLd(/I) such that

v(M —1) > (M U,0(M) —1) > a+1.

[N

Proof. The proof is parallel to Lemma 3.9, approximating Hilbert’s Theorem
90.

Fix H; C H open and normal such that v(U, — 1) > a + 1 + a/2 for
o € Hj, which is possible by continuity. Because A satisfies (TS1), we can
find o € A1 such that

v(a) > —a/2, Y 7(a)=1

TEH/H,

Let S C H be a set of representatives of H/Hy, denote Mg = > o(a)U,, we
oes

have Mg —1= Y o(a)(U, — 1), this implies v(Mg — 1) > a/2 and moreover
ocesS
—+ 00
Mgt =Y "(1-Ms)",
n=0

so we have v(Mg') > 0 and Mg € GLg(A).

If € Hy, then U, — U, = Uy (0(U;) — 1). Let S’ C H be another set of
representatives of H/H;, so for any ¢’ € S/, there exists 7 € H; and 0 € S
such that ¢/ = o7, so we get

Ms = Mg =Y 0(a)(Usy — Ugr) = Y _ o(@)Uy (1 = o(U,)),

g€eS oces

thus
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v(Mg —Mg)>a+1+a/2—a/2=a+1.

For any 7 € H,

U.r(Ms) =Y 70(a)Urm(Uy) = M.

Then
Mg'U-m(Ms) =1+ Mg' (Mg — Ms),

with v(Mg'(Mys — Mg)) > a + 1. Take M = Mg for any S, we get the
result. O

Corollary 3.42. Under the same hypotheses as the above lemma, there exists

M € GLg(A) such that
o(M—1)>a/2, M 'U,0(M)=1,Y 0 € H.

Proof. Repeat the lemma (a — a+1+— a+2+— ---), and take the limits. O

3.4.3 Decompletion

Lemma 3.43. Assume given § > 0, b > 2Cy +2C3+ 4§, and H C Hy is open.
Suppose n > n(H), v € G/H with n(y) <n, U =1+ Uy + Uy with

Ur € Mg(Af ), v(U1) >b—Cy —Cs
Uy € Mg(A™), 0(Uy) > ¥ > b.
Then, there exists M € GLg(A"), v(M — 1) > b— Cy — C5 such that
MUy (M) =1+ Vi + Vo,
with
Vi € Ma(Any), v(Vi) >b—Cy — Cs,

Vo € Mg(A™), v(Va) > b+
Proof. Using (TS2) and (TS3), one gets Uy = Ry, (Uz2) + (1 — )V, with
v(Ran(Uz) 2 0(U2) = oy (V) 2 0(Uz) — C2 = Cs.
Thus,

A+V) U1+ V) =1 =V + V2= )1+ U+ Ua)(1+5(V))
=1+4U; + (y— 1)V + Us + (terms of degree > 2)

Let Vi = Ui+ Ry n(Usz) € Myg(An ) and W be the terms of degree > 2. Thus
v(W)>b+b —2Cy —2C3 > +0. Sowe can take M =1+V, Vo =W. O
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Corollary 3.44. Keep the same hypotheses as in Lemma 3.43. Then there
exists M € GLy4(A?),v(M — 1) > b — Cy — C3 such that M~ 1U~y(M) €
GLa(Am ).

Proof. Repeat the lemma (b+— b+ — b+2§ +— ---), and take the limit. O

Lemma 3.45. Suppose H C Hy is an open subgroup, i > n(H), v € G/H,
n(y) <i and B € GL4(A®). If there exist V1,Va € GLg(Ap ;) such that

U(‘/l_l) >C37 U(VYQ—l)>C3, 7<B>:‘/1B‘/2;
then B € GLd(AH,Z)

Proof. Take C = B — Ry ;(B). We have to prove C' = 0. Note that C' has
coefficients in Xg,; = (1 — RH,Z')AH, and Rp; is Apg;-linear and commutes
with . Thus,

VC)=C=VCVo—C=(V1—-1)CVa+V1C(Va— 1) = (Vi = 1)C(V2 — 1)

Hence, v(v(C) — C) > v(C) + Cs. By (TS3), this implies v(C) = +o0, i.e.
C=0. o

3.4.4 Applications to p-adic representations

Proposition 3.46. Assume A satisfying (TS1), (TS2) and (TS3). Let o —
U, be a continuous cocycle from Gy to GLd(/I). If G C Gy is an open normal
subgroup of Go such that v(Uy, — 1) > 2Cy + 2C5 for any 0 € G. Set H =
G N Hy, then there exists M € GLg(A) with v(M — 1) > Cy + Cs such that

o+— Vo =M"'U,o(M)

satisfies Vo € GLa(Agn(e)) and Vo =1 if o € H.
Proof. Let o — U, be a continuous 1-cocycle on Gy with values in GLd(/T).
Choose an open normal subgroup G of G such that

;ggv(Ug —1) > 2(Cs + C5).
By Corollary 3.42, there exists M; € GLd(/T)7 v(My — 1) > Cy + C3 such
that o+ U, = M, 'Uyo(M,) is trivial in H = G'N Hy. In particular, U has
values in GLg(AH).
Now we pick v € G/H with n(y) = n(G). In particular, we want n(G) big
enough so that v is in the center of Go/H. Indeed, the center is open, since
in the exact sequence:

1*>H0/H4>G0/H*>G0/H0*>1,



3.4 Sen’s method. 109

Go/Hy ~ Z, x (finite), and Hy/H is finite. So we are able to choose such an
n(G).

Then we have v(U,’Y —1) > 2(Cy+ C3), and by Corollary 3.44, there exists
M, € GLd(/TH) satisfying

v(My —1) > Cy 4+ C3 and MQ_IU';’Y(MQ) € GLa(An n(@))-
Take M = M; - M5, then the cocycle

oV, =M U,a(M)

is a cocycle trivial on H with values in GL4(A), and we have
’U(ny —1) > Cy+ C3 and V, € GLd(AH,n(G))-

This implies V,, comes by inflation from a cocycle on Go/H.
The last thing we want to prove is V; € GL4(Ag n(q)) for any 7 € Go/H.
Note that v = 7 as «y is in the center, so

Vet (V) = Vg = Vo = Voy(V7)

which implies v(V;) = V7_1VTT(V7). Apply Lemma 3.45 with V; = Vw_l, Vo=
7(V5), then we obtain what we want. O

Proposition 3.47. Let T' be a Z,-representation of Gy of rank d, k € N,
v(p*) > 2C5 + 2Cs, and suppose G C Gy is an open normal subgroup acting
trivially on T/p*T, and H = G N Hy. Let n € N,n > n(G). Then there exists
a unique Dy ,(T) C A® T, a free A n-module of rank d, such that:

(1) Dy o (T) is fized by H, and stable by Go;

(2) A ®AH,n DH,n(T) — A ® T;'

(8) there exists a basis {e1,...,eq} of Dy over Ay, such that if v €
G/H, then v(V, — 1) > Cs, V,, being the matriz of ~.

Proof. This is a translation of Proposition 3.46, by the correspondence
A-representations of Go «—— H' (G, GLg4(A)).

Let {v1,--- ,vq} be a Z,-basis of T', this is also regarded as a A-basis of /I(X)T,
which is a A-representation of Gy. Let o — U, be the corresponding cocycle
from Gy to GL4(Z,) — GLg(A). Then G is a normal subgroup of Gy such
that for every o € G, v(U, — 1) > 2C3 + 2C3. Therefore the conditions in
Proposition 3.46 are satisfied. Then there exists M € GLg(A), v(M — 1) >
Cs + Cs, such that o +— V, = M~1U,0(M) satisfies that V, € GL4(Apn(c))
and V, =1 for o € H.

Now let (e1,---eq) = (v1,--- ,vq)M. Then {ey,--- ,eq} is a basis of A x T
with corresponding cocycle V,. For n > n(G), let Dy o (T) be the free Ap p-
module generated by the e;’s. Clearly (1) and (2) are satisfied. Moreover, if
v €G/H,
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v(V,—1) = v(M YU, ~1)M+M U, (y=1)(M—-1)) > v(M—1) > Co+C5 > Cj.

For the uniqueness, suppose D; and D- both satisfy the condition, let
{e1,--- ,eq} and {e], -, €} be the basis of Dy and D, respectively as given
in (3). Let V, and W, be the corresponding cocycles, let P be the base change
matrix of the two bases. Then

W, =P 'Vy(P) = ~(P)=V,"PW,.
one uses Lemma 3.45, then P € GL4(Ag n(e)) and Dy = Ds. O

Remark 8.48. Hy acts through Ho/H (which is finite) on Dy ,,(T). If Ag, is
étale over A, ,, (the case in applications), and then Dy, ,(T) = Dy, (T)Ho/H),
is locally free over A, , (in most cases it is free), and

A @) Dy n(T) =5 Dy (T). (3.22)

AHg,n

3.5 C-admissible representations

3.5.1 Notations for the rest of the book.

From now on to the rest of the book, if without further notice, we fix the
following notations.

Let K be a p-adic field. Let Ok be its ring of integers, and myg be the
maximal ideal of Ok and k be its residue field, which is perfect of characteristic
p > 0. W = W(k) is the ring of Witt vectors and Ky = FracW = W[1/p] is
its quotient field. We know that

ranky Ok = [K : Ko] = ex = vk (p)

and if 7 is a generator of mg, then 1,7, --- , 7%~ ! is a basis of Ok over W

as well as K over K. Let o be the Frobenius map F as in § 0.2.1 on Ky, then
o(a) =a? (mod pW) ifaecW.

Let K be an algebraic closure over K.

For any subfield L of K containing Ko, set G, = Gal(K/L). Let C' = K.
By continuity, the Galois group G, , hence also Gx, acts on C' and

CCrx = K.

From now on, v will be always the valuation of C' or any subfield such that
v(p) =1, i.e. v = vp. Then v(m) = i

For any subfield L of C, we denote
o Op={zeLl]|v(x)>0};



3.5 C-admissible representations 111
e my={zeL|v(z)>0};
° kL = OL/mL.

Denote by L the closure of L in C, that is O; = lim OL/p"Oyr. We have
n>1

L= OZ[%] and k7 = kr. We know that ki = ke = k, where % is an algebraic
closure of k. Let Gy, = Gal(k/k), Ixc be the inertia subgroup of Gx, then

1->Ix -G — G — 1

is exact.

3.5.2 K-admissible p-adic representations

Note that K is a topological field on which G'x acts continuously.

Definition 3.49. A K-representation X of Gx is a K -vector space of finite
dimension together with a continuous and semi-linear action of Gk .

For X a K-representation, the map
ax K@ X Grx X
is always injective. X is called trivial if ax is an isomorphism.
Proposition 3.50. X is trivial if and only if the action of Gy is discrete.
Proof. The sufficiency is because of Hilbert Theorem 90. Conversely if X is

trivial, there is a basis {e1,---,eq} of X over K, consisting of elements of

d
XU For any z = Y. \je; € X, we want to prove G, = {g € G| g(z) = z} is
i=1

d
an open subgroup of G. Because of the choice of ¢;’s, g(z) = > g(\;)e;, so
i=1

(3

d d
Ge=[g€Glg\)=\}:=[)GCn,

i=1 =1
each )\; € K is algebraic over K, so G, is open, then the result follows. [

Definition 3.51. If V' is a p-adic representation of Gk, V is called K-
admissible if K ®q, V' is trivial as a K-representation.

Let {v1,--- ,vq} be a basis of V' over Q. We still write v; = 1 ® v; when
they are viewed as a basis off@)@p V over K. Then by Proposition 3.50, that
V is K-admissible is equivalent to that G,, = {g € G | g(v;) = v;} is an open
subgroup of G for all 1 <4 < d, and it is also equivalent to that the kernel of

p: Gg — Autg, (V),

d

which equals () G,,, is an open subgroup.
i=1
We thus get
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Proposition 3.52. A p-adic representation of G is K -admissible if and only
if the action of Gk is discrete.

We can do a little further. Let K" be the maximal unramified extension
of K contained in K, P = K" the completion in C, and P the algebraic
closure of P in C. Clearly P is stable under Gk, and Gal(P/P) = Ik.

Set Py = K, then P = KPy and [P : Py = ex.

Question 3.53. (1) What does it mean for a P-representation of G to be
trivial? -
(2) What are the p-adic representations of Gx which are P-admissible?

Proposition 3.54. (1) The answer to Q1, i.e., a P-representation of Gk is
trivial if and only if the action of I is discrete.

(2) A p-adic representation of G is P-admissible if and only if the action
of Ik is discrete.

Remark 3.55. By the above two propositions, then if V is a p-adic represen-
tation of G, and p : Gx — Autg, (V), then

V is K-admissible <= Ker p is open in G,
V is P-admissible <= Ker p N I is open in If.

Proof. Obviously (2) is a consequence of (1), so we only prove (1).

The condition is necessary since if X is a P-representation of Gk, then X
is trivial if and only if X & P? with the natural action of Ggk.

We have to prove it is sufficient. Suppose X is a P-representation of G
of dimension d with discrete action of Ix. We know that fIK = P, and

Pop Xk X

is an isomorphism by Hilbert Theorem 90. Set Y = X'x because G /Ix =
Gy, Y is a P-representation of Gi. If P @ Y — Y is an isomorphism,
since X¢K% = Y% then P ®x X% — X is also an isomorphism. Thus it is
enough to prove that any P-representation Y of Gy, is trivial, that is, to prove
that P @ Y¢* — Y is an isomorphism.

But we know that any Py-representation of Gy is trivial by Proposi-
tion 2.30: we let

E:k7 OE:VVa g:KO’ (c/'ur:K(1)1r7

then £ur = Py and any ﬁr—representation of G is trivial. Note that P = K F,
and [P : Py] = ek, any P-representation Y of dimension d of Gy, can be viewed
as a Py-representation of dimension ey d, and

Pk YO = Py@r, YO 5 Y,

so we get the result. O



3.5 C-admissible representations 113
3.5.3 C-admissible representations.
We can now use Sen’s results to study C-admissible representations.

Proposition 3.56. A p-adic representation V of G is C'-admissible if and
only if the action of Ik on V is discrete.

Proof. Clearly, the condition is sufficient because as P C C, any representa-
tion which is P-admissible is C-admissible.

For V a p-adic representation of Gk, suppose {v1, - ,v4} is a basis of V
over Qp, V is C-admissible if and only if there exist a C-basis {e1,--- ,eq} €
d

W =C®q,V, e = > cij ®v;, satisfying that g(e;) = e; for all g € Gg.
i=1

Thus W is trivial and Sen’s operator Oy of W is 0, by Sen (Corollary 3.33),
then p(Ik) is finite. O

As a special case of this proposition, we consider any continuous homo-
morphism 7 : G — Zy, and let Q,(n) be the Q)-representation obtained by
giving Q, the action of G}, via 1. Set C(n) = C ®q, Q,(n), Tate proved that

Corollary 3.57.
C(T])GK =0, Zf n(IK) Z:S ’}”LOt' ﬁnite, (323)
> K, ifn(Ik) is finite.

Proof. One notes that the C-representation C(n) is admissible if and only if
C(n)9x, as a K-vector space of dimension < 1, must be 1-dimensional and
hence is isomorphic to K. a
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The ring R and (¢, I')-module

4.1 The ring R

4.1.1 The ring R(A).

Let A be a commutative ring, and let p be a prime number. We know that A
is of characteristic p if the kernel of Z — A is generated by p; such a ring can
be viewed as an [Fp-algebra. If A is of characteristic p, the absolute Frobenius
map is the homomorphism

p:A— A, av ab.

If ¢ is an isomorphism, the ring A is perfect. If ¢ is injective, then A is
reduced, that is, there exists no nontrivial nilpotent element, and vice versa.
If k is perfect, we denote by o the absolute Frobenius on k and its induced
Frobenius on W (k) and on Ky = W(k)[%}

Definition 4.1. Assume A is of characteristic p, we define

R(A) := lim A,,, (4.1)
neN

where A,, = A and the transition map is ¢. Then an element x € R(A) is a
sequence x = (Tp)nen satisfying x, € A, x} | = .

Proposition 4.2. The ring R(A) is perfect.

Proof. For any @ = (p)nen, T = (Tn41)h ey, and 2P = 0 implies 28 = xp41 =

0 for any n > 1, then x = 0. O
For any n, consider the projection map

0,: R(A) — A

(xn)neN = Tp.
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If A is perfect, each 0, is an isomorphism; A is reduced, then 6y (hence 6,,) is
injective and the image

Om(R(A)) = [ ©"(A).

If A is a topological ring, then we can endow R(A) with the topology of
the inverse limit. In what follows, we are going to apply this to the case that
the topology of A is the discrete topology.

Now let A be a ring, separated and complete for the p-adic topology, that
is, the canonical map A — @1 A/p™A is an isomorphism. We consider the

neN
ring R(A/pA).

Proposition 4.3. There exists a bijection between R(A/pA) and the set
S = {(fﬂ("))neN ‘ ™ e A, (x(nﬂ))p - x(")}.
Proof. Take x € R(A/pA), that is,
T = (Tp)nen, Tn € A/pAand 2P | = z,.

For any n, choose a lifting of x,, in A, say Z,,, we have

zh | = Z, modpA.
Note that for m € N, m > 1, a« = fmod p™A, then

aP = AP mod p™ A,
thus for n,m € N, we have

pmtl m

__=p m—+1
Tntm+1 = Tntm mOdp A.

Hence for every n, lim Z} exists in A, and the limit is independent of
m——+oo

the choice of the liftings. We denote
(M — m1_1>1_1~_1oo §ﬁ+

Then z(™ is a lifting of z,,, (z("+t1)P = 2" and z — (™), cn defines a map
R(A/pA) — S.

On the other hand the reduction modulo p from A to A/pA naturally induces

the map S — R(A/pA), (™), en — (2™ mod pA),en. One can easily check

that the two map are inverse to each other. a

Remark 4.4. In the sequel, we shall use the above bijection to identify R(A/pA)
to the set S. Then any element x € R(A/pA) can be written in two ways

&= (p)nen = (@™ )pen, o € A/pA, ™ € A. (4.2)
If £ = (), y = (y") € R(A/pA), then
(@y)™ = @My, (@+y) = lim (@ 4yt (43)

m——+o0
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4.1.2 Basic properties of the ring R.

We have just introduced the ring R(A). The most important case for us is
that A = Oy, with L being a subfield of K containing Kjy. Identify O, /pOy, =
O3 /pO;, then the ring

R(Or/pOr) = R(0; [p0;) = {a = (f(”))neN ‘ PCON= 0;, (x(nJrl))P - x(n)}.
In particular, we set
Definition 4.5. R := R(Ox/pO%) = R(Oc/pO¢).

Recall v = v, is the valuation on C normalized by v(p) = 1. We define
vr(z) = v(z) == v(@®) on R.

Proposition 4.6. The ring R is a complete valuation ring with the valuation
given by v. It is perfect of characteristic p. Its mazimal ideal mp = {x € R |
v(x) > 0} and residue field is k.

The fraction field Fr R of R is a complete nonarchimedean perfect field of
characteristic p.

Proof. We have v(R) = Q>0 U {+oc} as the map R — O¢, z — 2(©) is onto.
We also obviously have

v() =40 e =0sz=0,

and
v(ay) = v(z)v(y).
To see that v is a valuation, we just need to verify v(x +y) > min{v(z),v(y)}
for all x,y € R.
We may assume z, y # 0, then (9,4 =£ 0. Since v(z) = v(z(®) =
p"o(x(™), there exists n such that v(z(™) < 1, v(y™) < 1. By definition,
(z + )™ =2 4 4™ (mod p), so

v((z+1)™) > min{o(z™), v(y™), 1}
> min{v(z™), v(y™)},

it follows that v(z 4+ y) > min{v(x),v(y)}.

Since
v(@)>p" o) >1e 2, =0,

we have
{reR|v(x) >p"} =Ker (0, : R— Oc/pOc).

So the topology defined by the valuation is the same as the topology of inverse
limit, and therefore is complete. Because R is a valuation ring, R is a domain
and thus we may consider Fr R, the fraction field of R. Then

FrR = {q; = (x(n))nEN | JT(n) c C, (1‘(""!‘1))20 — Z‘(")}
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The valuation v extends to the fraction field Fr R by the same formula v(z) =
v(z). Fr R is a complete nonarchimedean perfect field of characteristic p > 0
with the ring of integers

R={zeFR|v(z)>0}

whose maximal ideal is mp = {z € Fr R | v(z) > 0}.
For the residue field R/mpg, one can check that the map

R O [pOg — k
is onto and its kernel is mp, so the residue field of R is k. a

~ Because k is perfect and R is complete, there exists a unique section s :
k — R of the map R — k, which is a homomorphism of rings.

Proposition 4.7. The section s is given by

- —n

ack— ([&" |nen

where [a? "] = (a? ",0,0,---) € Oxye is the Teichmiiller representative of
o
Proof. One can check easily ([a? """])P = [aP "] for every n € N, thus

([a? "])nen is an element @ in R, and 6y(@) = [a] whose reduction mod p is
just a. We just need to check a — a is a homomorphism, which is obvious. O

Proposition 4.8. Fr R is algebraically closed.

Proof. As Fr R is perfect, it suffices to prove that it is separably closed, which
means that if a monic polynomial P(X) = X% +aq 1 X9 1+ -+ a1 X +ap €
R[X] is separable, then P(X) has a root in R.

Since P is separable, there exist Uy, Vj € Fr R[X] such that

UpP + VoP' = 1.

Choose 7 € R, such that v(r) = 1(for example, take 7 = (p(™),en, p{®) = p),
then we can find m > 0, such that

U=7"Uy € RIX|], V=1"V,€ R[X],
and UP + VP = g™,

Claim: For any n € N, there exists x € R, such that v(P(z)) > p™.
For fixed n, consider 6,, : R — Oz/p, recall

Kerf, ={ye€ R|v(y) >p"},

we just need to find x € R such that 6,,(P(z)) = 0. Let
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QX)=X"+- -+ X +a € Of[X],

where «; is a lifting of 6,,(a;). Since K is algebraic closed, let u € O3 be a
root of Q(X), and @ be its image in Ox/pO%, then any x € R such that
0. (x) = u satisfies 0,,(P(z)) = 0. This proves the claim.
Take ng = 2m + 1, we want to construct a sequence (z,)n>n, of R such
that
V(@pt1 —Tp) >n—m, and P(z,) € "R,
then lim =z, exists, and it will be a root of P(X).

n—-+oo
We construct (z,,) inductively. We use the claim to construct x,,,. Assume
T, is constructed. Put

o1 { i—j
pPll = —pl)(x) = ()aiX’_],
=3

‘]! >3
then o
P(X +Y)=P(X)+YP(X)+> Y/ PI(X).
Jj=2
Write z,41 = x,, + vy, then
P(zn41) = P(zn) + yP'(z,) + Zyjp[j] (Tn). (4.4)
Jj=2

If v(y) > n —m, then v(y? PU)(z,)) > 2(n —m) > n+1 for j > 2, so we only
need to find a y such that

v(y) >n—m, and v(P(z,)+yP (z,)) >n+1.
By construction, v(U(z,)P(xy)) > n > m, so
v(V(zn) P (z)) = v(7™ — U(zn)P(2,)) = m,

which implies that v(P'(z,)) < m. Take y = —11;,(&’;))

and we get x,11 as required. a

, then v(y) > n—m

4.1.3 The multiplicative group Fr R*.
Lemma 4.9. There is a canonical isomorphism of Z-modules

Fr R* =2 Hom(Z[1/p], C™).

Proof. Given a homomorphism f : Z[1/p] — C*, write (™) = f(p~"), then
(zFYP = 2" 50 & = (2"),en € R, thus we get a canonical homomor-
phism

Hom(Z[1/p],C*) — Fr R".

One can easily check that this is an isomorphism. O
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From now on, we identify Fr R* with Hom(Z[1/p], C*) by the above canon-
ical isomorphism.

Denote by Ug C Fr R* the group of the units of R. Since for z € R,
z € Ur & 20 € O, we get

Ur = Hom(Z[1/p], O¢).

Let le}) be the ring of Witt vectors of k. Since W (k) C O¢, we get an
inclusion £* <— O*. Let Ua“ =1+ m¢, then OF = k* x Ua’, and therefore

Un = Hom(Z[1/p], 0%)
= Hom(Z[1/p], k*) x Hom(Z[1/p], UZ).

In k, any element has exactly one p-th root, so Hom(Z[1/p], k*) = k*. Similarly
we have
Uf; = {v € R| 2" € Ut} = Hom(Z[1/p], UZ),

therefore we get the factorization
Ur = ];3* X U}—g

Set Uy = {z € R|v(z—1) > 1}, then (UL)?" = {z € U} | v(z—1) > p"},
and
Up = lim Ug/(Ug)"
neN
is an isomorphism and a homeomorphism of topological groups. So we may
consider U, as a Z,-module which is torsion free.

For z € U, v(z — 1) > 0, then v(zP" — 1) = p"v(z — 1) > 1 for n large
enough. Conversely, any element z € Uy has a unique p"-th root in UE. We
get

Qp ®Zp Ull:i — UE
pPrRuU s uP
is an isomorphism.

To summarize, we have

Proposition 4.10. The sequence
0—-Ur—FrR"5Q—0 (4.5)

is exact and
(1) Fr R* = Hom(Z[1/p], C*);
(2) Up = Hom(Z[1/p), O)
(3) UE = Hom(Z[l/p},Ug) =Q, ®z, Ug; ’
(4) Up={z € R|v(z—1) > 1} — lim U /(Ug)"".
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4.2 The action of Galois groups on R

4.2.1 The action of Galois groups.

As in the previous chapters, we let W = W (k), Ko = FracW. The group
Gk, = Gal(K/Kj) acts on R and Fr R in the natural way.

Proposition 4.11. Let L be an extension of Ko contained in K and let H =
Gal(K/L). Then

RH = R(OL/pOL), (FrR)H = Frac(R(OL/pOL)).
The residue field of RY is ky, = k™, the residue field of L.
Proof. Assume z € RH (resp. Fr RH). Write
= (") pen, 2™ € Oc(resp. C).
For h € H, h(x) = (h(2™)),ey. Hence
x € R (resp. Fr RT) «—= 2™ € (0c) (resp. CH), Y n e N,
then the first assertion follows from the fact

CH =1L, (0c)" =0cn=0; =1im0O,/p"Oy.

The map k — R — k induces the map k; — R — k1, and the composition
map is nothing but the identity map, so the residue field of R¥ is k;.. O

Proposition 4.12. If v(L*) is discrete, then
R(OL/]DOL) = RH = kL.
This is the case if L is a finite extension of K.

Proof. From the proof of last proposition, k;, € R¥ = R(Or/pOp), it remains
to show that

z=(2"),en € RE, v(z) >0 =2 =0.
We have v(z™) = p~u(z®), but v(L*) = v(L*) is discrete, so v(z) =
v(2(9)) = 400, which means that z = 0. O

4.2.2 R(K{" /pOkeve), € and 7.

Let K¥° be the subfield of K obtained by adjoining to K the p™-th roots of
1 for all n. Take (¢(),>¢ such that

e® =1,6W £1, and (") =™ for n > 1.

Then
K = | Ko(e™).
neN
The question is: what is R(Ogeve /[pOeve)?
First its residue field is k.
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Lemma 4.13. The element ¢ = () ,cn is a unit of R(Ogeve [pOkeve).

Proof. Write e, the image of ™ in Ogeve [pOfeve. Put m = € — 1, then

70 = mlirgrlm(s(m) —1)P" since ¢® —1 =0, and v(™ —1) = W for

m > 1, we have v(m) = v(7(")) = 525 > 1. Thus the element € = () pen is
a unit of R(Ogeve /pOgceve). 0

Remark 4.14. From now on, we set € and m = ¢ — 1 as in the above Lemma.

Proposition 4.15. We have a short exact sequence

o (0
0 — Z,(1) =5 Uh 22 =h ¢ — 0
which respects Gk, -action and induces a short exact sequence
0—>@p(1)m—E>UE—>C—>O.

Proof. This is an easy exercise. a

Set H = Gal(K /K"), then R = R(Ojceve /pOceve) by Proposition 4.11.
Since m € R and v(7) = vp(w(o)) = p’%l > 1,k c R¥, and R¥ is complete,
then

k[[7]] ¢ R® and k((n)) C (FrR)H.

Since for every z = (2(™),eny € R, x = y? with y = (2(**tV),cn, R and
(Fr R)™ are both perfect and complete, we get

kK[)ad ¢ RE,  k((x))™d C (Fr R)Y.

Theorem 4.16. We have

o — —

R[]™ = RY, k((m)™ = (Fr R)™.
Moreover, for the projection map
Om : R — O /pO%, 0m((Tn)nen) = Tm, (meN)

then
O (R™) = Ogceve [pOcee.
Proof. Set Ey = k((r)), F = Ep*, L = K = |J Ko(¢™). Tt suffices to
n>1
check that O is dense in R, or even that Op is dense in R*. Since R is
the inverse limit of Oy, /pOy,, both assertions follow from

0.,,(Or) = O /pOr,  for all m € N.

So it suffices to show that Op/pOr, C 0,,(OF), for all m.
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Set 7, = (™ — 1, then

OKO [E(n)] - W[Wn]v OL = U W[Trn]

n=0

Write 7, = &, — 1, the image of 7, in O /pOy, then O /pOy is generated
as a k-algebra by 7,’s. Since k C Op,, we are reduced to prove

T € 00 (OF) = 0, (K[[7]]2Y),  for all m,n € N.

For all s € Z, 77~ € k[[x]]"*¢, and

—s

P

1= (), ey — 1

== (€n+s - 1)n€N7

where (™ =1 if n < 0. Since Ents — 1 =Tpts for n+s >0, let s =n —m,
we get

m—n

T = O (777 ") € Oy (K[[7]]).
This completes the proof. a

4.2.3 A fundamental theorem.

Theorem 4.17. Let E§ be the separable closure of Ey = k((m)) in FrR,
then E§ is dense in FrR, and is stable under Gg,. Moreover, for any
g € Gal(R/KS"),

9les € Gal(Ej/Eb),

and the map Gal(K/Ky'°) — Gal(Es/Eo) is an isomorphism.

Proof. As Ef is separably closed, E\g is algebraically closed. Let E; be the
algebraic closure of Ey in Fr R. It is enough to check that Ey is dense in Fr R
for the first part. In other words, we want to prove that Og_ is dense in R.
As R is the inverse limit of O%/pO7%, it is enough to show that

0m(0z,) = Ox/pOx, forallmeN.
As E| is algebraically closed, it is enough to show that
00(0g,) = Ox/pOx-
Since O = lim Op, it is enough to check that for any finite Galois

[L:K] <400
L/Ky Galois

extension L of K,
OL/pOL C Gm(OEO)

Let Ko, = Ko(¢™) and L,, = K, L, then L, /Ky, is Galois with Galois
group J,, = Gal(L,,/Ky,) and for n large, we have J,, = J,41 = J. Since
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k C Og,, replacing Ko by a finite unramified extension, we may assume
L, /Ky, is totally ramified for any n.

Let v, be a generator of the maximal ideal of Or,,, then Or, = Ok, , [V]
since Ly, / Ko,» is totally ramified. Since 6o(O5,) D Ok, ,./pOk, .., it is enough
to check that there exists n such that v, € 6o(O5, ), where 7, is the image of
v, in Op, /pOp, .

Let P, (X) € Ko,,[X] be the minimal polynomial of v,,, which is an Eisen-
stein polynomial. When n is sufficiently large, P, is of degree d = |J|. Write

P, (X) = [[ (X — g(vn)). We need the following lemma:
geJ

Lemma 4.18. Forany g € J, g # 1, we have v(g(vn) —vn) — 0 asn — +o0.

Proof (Proof of the Lemma). This follows immediately from (0.27) and the
proof of Proposition 0.88. a

We will see that the lemma implies the first assertion. Choose n such that
v(g(vn) —vn) < 1/d for all g # 1. Let P,(X) € Ok, [X]/pOk,.,.[X] be the
polynomial P,(X) (mod p), We choose Q(X) € Og,[X], monic of degree d,
a lifting of P,. Choose 3 the image in O /pOg by o of a root of Q in O,
in such a way that

v(ﬁfﬁn) 2”([3*9(’771))’ for allgeJ.
We also have v(P,(3)) > 1 since Q is a lifting of P, thus

V(B —Un) >

IV 2l

Choose b € O a lifting of 3 such that v(b)
as well, then v(b— 1,,) > 3 and hence

0 and b is of degree d over Ky,

v(b—uvp) >v(v, —g(vn)), forallgeJ

By Krasner’s Lemma, v, € Ko (b), moreover, o, = 3 € fo(Og,). This proves
the first assertion.

For any a € E§, let P(z) = i N\ X" € Ey[X] be a separable poly-
nomial such that P(a) = 0. The;:Ofor any g € Gg,, g(a) is a root of
g(P) = Zd: g(A\;)X?. To prove g(a) € E§, it is enough to show g(Ey) = Eo,
which folllzoows from the fact

gm) = (L4 w0 1.

Moreover, for any g € Gal(K/Kg"), then g(a) is a root of P. Thus for g €
Gal(K/Ky) := H, g|g; € Gal(Ej§/Ey), in other words, we get a map

Gal(K/Ky¥) — Gal(Ej/Ey).
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We want to prove this is an isomorphism.

Injectivity: g is in the kernel means that g(a) = a, for all a € E§, then g(a) = a
for all a € Fr R because Ej is dense in Fr R and the action of g is continuous.

Let a € FrR, then a = (a™),ey with a(™ € C, and (a*tD)P = o),
g(a) = a implies that g(a(®) = a(?, but the map 6, : Fr R — C is surjective,
so g acts trivially on C, hence also on K, we get g = 1.

Surjectivity: We identify H = Gal(K /Ky'°) — Gal(E/Eo) a closed subgroup
by injectivity. If the above map is not onto, we have

By G F = (E)" c (R R = 3,

that is, F' is a separable proper extension of Fy contained in E5*d. To finish
the proof, we just need to prove the following lemma. O

Lemma 4.19. Let E be a complete field of characteristic p > 0. There is no
nontrivial separable extension F of E contained in Er24d,

Proof. Otherwise, we could find a finite separable nontrivial extension E’ of
E contained in E™4. There are d = [E' : E] distinct embeddings o1, ,04 :
E' — E*. We can extend each o; to E'* in the natural way, that is, by
setting o;(a) = o;(a?")P"". This map is continuous, hence can be extended
to Era\d = E/;a\d. But o, is the identity map on E™4, so it is the identity map
on Erad, This is a contradiction. a

4.3 An overview of Galois extensions.

4.3.1 A summary of Galois extensions of Ko and Ej.

We now give a summary of the Galois extensions of Ky and Ej we have studied
so far or shall study later.

(1) The field K is a p-adic field with perfect residue field k. The field Ky
is the fraction field of the Witt ring W (k). The extension K D Kj is totally

ramified. Let K¢ = KK = |J K(¢™), we have the following diagram
n>1

Hyg = Gal(K/K%°) C Gk = Gal(K/K)
N N
Hg, = Gal(K/K{*°) C Gk, = Gal(K/K)).

Moreover, Hx = Hg, N Gk, if we set I'x = Gx/Hg = Gal(K“°/K), then
I'x C I'k, = Gk,/Hk,, which is isomorphic to Z; via the cyclotomic charac-
ter x. Since Zy, is of rank 1 over Z,, with torsion subgroup
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Pt T 7,27 if p=2,

the group I'k is also rank 1 over Z,, and we have
1—Ax —I'x — T — 1,

where T'yy ~ Z,, and Ag is the torsion subgroup of Iy, isomorphic to a
subgroup of (Z;)tor. Let Ko, = (K%°)4%, Then K, is the cyclotomic Lyy-
extension of K and moreover K, = Ko oo K.

Let Hx = Gal(K/K), then we have exact sequences

1—Hg —Gg — T —1,

1—Hg — Hig — Ag — 1.

Replace K by any finite extension L of Ky, we obtain field extensions
LY = KL, Loo = Ko,00L and Galois groups I, Hr,, Ar, T', and Hy,.
In conclusion, we have Fig. 4.1.

K
Hpy, Hy, \
Lee | He
K¢ I | Lo
Ko,00 \L
Tk, /
Ko

Fig. 4.1. Galois extensions of K and Ko

(2) The field Ey = k(()). Moreover, Ey C E§ C Fr R, and Hx C Hg, =
Gal(Eg/Ey). For p # 2, the group Ak, = F acts on Ep, and if we set

fo = E €[a],
a€l,

where [a] € Z, is the Teichmiiller representative of a, then Eq = k((7o)) =

EOA "o Note that 7, is independent of the choice of . (For p = 2 one let
7o =m+n~ ! and similar result holds).
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Set Ex = E = (E3)Hx, then E5/E is a Galois extension with Galois
group Gal(E§/E) = Hg, and E/Ej is a finite separable extension. Set

E = Bx = (E)P* = (B)*, (4.6)

then E/F is a Galois extension with Galois group Gal(E/E) = Ag. We see
that Ef is also a separable closure of E. Set £ = Ef.

If we replace K by any finite extension of Ky, we get the corresponding
EL and EL~

In conclusion, we have Fig. 4.2 .

Hre //

H; forad
E E?

e

Eo = Ek, E
Ak,
Eo = Ek,

Fig. 4.2. Galois extensions of E and Ey

Remark 4.20. E (resp. E) is stable under Gk, which acts through I'x (resp.
T'k).

4.3.2 The field B and its subrings.

Denote by W (Fr R) the ring of Witt vectors with coefficients in Fr R, which
is a complete discrete ring with the maximal ideal generated by p and residue
field W(Fr R)/p = Fr R. Let

~ 1
B =FracW(Fr R) = W (Fr R)[;)] (4.7)
The Galois group G, (and therefore G ) acts naturally on W (Fr R) and B.

Denote by ¢ the Frobenius map on W (Fr R) and on B. Then © commutes
with the action of Gk,: ¢(ga) = gp(a) for any g € Gk, and a € B.



128 4 The ring R and (¢, I')-module

We know that Ey = k((7)) C Fr R and k[[7]] C R. Let [¢] = (£,0,0,---) €
W (R) be the Teichmiiller representative of €. Set 7. = [¢] — 1 € W(R), then
e = (m, %, %,-++). Set W =W (k) C W(R).
Since
W(R) = lim W (R) = lim W () /"

where W,,(R) = {(ao,--- ;an—1) | a; € R} is a topological ring, the series

S Tl A€W, neN,

n=0
converges in W(R), we get a continuous embedding
W] = W(R),

and we identify W{[r.]] with a closed subring of W (R).
The element . is invertible in W (Fr R), hence

Wi(r) = Wlir (] € W R)

whose elements are of the form

+oo
> Aml Ay €W, A, =0 for n 0.

n—=—oo

Since W (Fr R) is complete, this inclusion extends by continuity to

+oo
Og, = { Z ATl | A € W, A\, — 0 when n — —oo}, (4.8)

n=-—oo

the p-adic completion of W ((.)).
Note that Og, is a complete discrete ring, whose maximal ideal is generated
by p and whose residue field is Ej, thus is the Cohen ring of Ey. Let & =

O¢g, [%] = Ko/((w\s)) be its fraction field, then & C B.
Note that Og, and & are both stable under ¢ and Gk,. Moreover
o([e]) = (eP,0,---) = [¢]?, and (7)) = (1 4+ )P — 1. (4.9)
The group Gk, acts through I'k,: for g € Gg,,
g([e]) = (X9, 0,---) = [e]¥9,
therefore
g(me) = (14w )X9 — 1. (4.10)

Let
ro=—p+ S [ (or[e] + 7Y~ 2if p=2),

a€l,

then £y = EOAK" is just the p-adic completion of Ko((m)).
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Proposition 4.21. For any finite extension F' of Ey contained in E° = L,

there is a unique finite extension Eg of &y contained in B which is unramified
and whose residue field is F'.

Proof. By general theory on unramified extensions, we can assume F = Fy(a)
is a simple separable extension, and P(X) € Ep[X] is the minimal polynomial
of a over Ey. Choose Q(X) € Og,[X] to be a monic polynomial lifting of P.
By Hensel’s lemma, there exists a unique « € B such that Q(a) =0 and the
image of a in Fr R is a, then £p = &y(a) is what we required. O

By the above proposition,

&r=|Jér c B, (4.11)
F

where F' runs through all finite separable extension of Fj contained in E*.
Let &3 be the p-adic completion of £§" in B, then £§" is a discrete valuation

field whose residue field is E° and whose maximal ideal is generated by p.
We have

Gal(E) /&) = Gal(Ej/Eo) = Hr,, Gal(E)/€o) = Gal(Ej/Eo) = Hg,.

Set
(E)IE =€k =&, (MK =Ex =€, (4.12)

then & (resp. £) is again a complete discrete valuation field whose residue field
is E (resp. E) and whose maximal ideal is generated by p, and £J"/E (resp.
EYT/E) is a Galois extension with the Galois group Gal(E}"/E) = Hk (resp.
HK). Set
g =gy, Eur = &,

It is easy to check that £ (resp. £) is stable under ¢, and also stable under
Gk, which acts through I'k (resp. I'k).

Replace £ and E by E, and Ej, for L a finite extension of K, one gets the

corresponding £, and £, whose residue fields are E;, and Ej, respectively.
We have Fig.4.3 .

4.4 (p, I')-modules and p-adic Galois representations

4.4.1 (p, I')-modules.

Let V be a Z, representation of Hg, where Hg = Gal(E®/E) = Gal(E™/E),
then
M(V) = (Ogm ®z, V)% (4.13)

is an étale p-module over Og¢. By Theorem 2.32, M defines an equivalence
of categories from Repy, (Hg), the category of Z, representations of Hg
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gur — ((/‘6\['
H
H, / L Hg,,
/ &L
/% \
£ o = Exy = Ko((m2))
\ Akg

Eo=Ek,

Fig. 4.3. Galois extensions of £ and &.

to ,//lﬁt(Og)7 the category of étale p-modules over Og, with a quasi-inverse
functor given by
V:Dvr— (Og ®op D)p=1- (4.14)

If instead, suppose V is a p-adic Galois representation of Hy. Then by
Theorem 2.33, .

D: Vi (Ew @, V)Hx (4.15)

defines an equivalence of categories from Repg, (Hg), the category of p-adic

representations of Hg to ///ﬁt(é’), the category of étale p-modules over &,
with a quasi-inverse functor given by

V:D— (E%@gD)ypey. (4.16)
Now assume V is a Z, or p-adic Galois representation of G, set
D(V) := (Ogs @z, V)5 or D(V) := (£ @g, V) 7x. (4.17)

Definition 4.22. A (¢, I')-module D over O¢ (resp. £) is a p-module over
Og (resp. £) together with an action of I'k which is semi-linear, and commutes
with @. D is called étale if it is an étale p-module and the action of I'k is
continuous.

If V is a Z,, or p-adic representation of Gk, D(V') is an étale (¢, I')-module.
Moreover, by Theorems 2.32 and 2.33, we have

Theorem 4.23. D induces an equivalence of categories between Repr(GK)
(resp. Repg (Gk)), the category of Z,, (resp. p-adic) representations of Gk
and ///ﬁfp((’)g) (resp. ///ﬁfp(é')), the category of étale (p, I')-modules over Og
(resp. £), with a quasi-inverse functor

V(D) = (Ozx ®o D)cp:l (resp. (5& ®e D)V;:l) (4.18)
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and G acting on Ogg ®o, D and Eur ®e D by
gA®d) =g(\) @ g(d)

where g is the image of g € Gg in I'x. Actually, this is an equivalence of
Tannakian categories.

Remark 4.24. There is a variant of the above theorem. For V' any p-adic rep-
resentation of Gi, then

D'(V) = (& ®g, V)Hx (4.19)
is an étale (¢, T')-module over £ = (£)Hx  and
D'(V) = (D(V))2%, Ag = Gal(£/E).
By Hilbert’s Theorem 90, the map
Ee D'(V) — D(V)

is an isomorphism. Thus the category ﬁfr(f) ) is an equivalence of categories

with Repg, (Gk) and j/f;fp(é’). For Z,-representations, the corresponding
result is also true.

Ezample 4.25.1F K = Ko = W(k)[L], W = W (k), then € = & = K((r.)). If
V =17, then D(V) = Og, = W((n.)) with the (¢, I')-action given by

p(m) = (1+m) =1, g(m)=(1+m)X9 —1. (4.20)

We give some remarks about a (¢, I')-module D of dimension d over &.
Let (e1,--+ ,eq) be a basis of D, then

d
ple;) = aije;.
=1

To give ¢ is equivalent to giving a matrix A = (a;;) € GLg(€). As I'x is
pro-cyclic (if p # 2 or pu, C K, moreover I'x = Z,, is always pro-cyclic), let
7o be a topological generator of I,

d
Yoles) =D bijes.
=1

To give the action of 7y is equivalent to giving a matrix B = (b;;) € GL4(E).
Moreover, we may choose the basis such that A, B € GL4(Og).

Exercise 4.26. (1) Find the necessary and sufficient conditions on D such
that the action of vy can be extended to an action of I'k.

(2) Find formulas relying A and B equivalent to the requirement that ¢
and I' commute.

(3) Given (A1, By), (As, Bs) two pairs of matrices in GLg4(&) satisfying the
required conditions. Find a necessary and sufficient condition such that the
associated representations are isomorphic.
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4.4.2 The operator .

Lemma 4.27. (1) {1,¢,--- ,eP~1} is a basis of Ey over p(Ep);
(2) {1,e,--- ,eP71} is a basis of Ex over ¢(Ek);
(3) {l,e, -+ ,eP71} is a basis of E* over p(E®);
(4) {1,[e],- -+, [e]P71} is a basis of Ogn over p(Og ).

Proof. (1) Since Ey = k((m)) with m = ¢ — 1, we have p(Ey) = k((7P));
(2) Use the following diagram of fields, note that Ex/Ej is separable but
Eo/p(Ep) is purely inseparable:

Eo —— Exk

o(Eo) ¢o(Er)

We note the statement is still true if replacing K by any finite extension L
over K.

(3) Because E* =, Er.

(4) To show that

(I‘O,le,"' y Lp— 1 5‘“ Z S“"
i=0

is a bijection, by the completeness of Og, it suffices to check it mod p, which
is nothing but (3). O
Definition 4.28. The operator ¢ : Og — O is defined by

p—1

(O el plas)) = xo.
i=0

Proposition 4.29. (1) ¢¢ =1d;
(2) ¢ commutes with G, .

Proof. (1) The first statement is obvious.
(2) Note that

p—1 p—1
9> el (@) = D[] o(g(xs))
i=0 i=0
If for 1 <4 <p-—1, write ix(g) = iqg + pjy with 1 <i, <p—1, then
(Y XD p(g(2:))) = (e(g(x0)) + Z [ g(2:))) = 9(x0).
i=0
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Corollary 4.30. (1) If V is a Z,-representation of G, there exists a unique
operator 1 : D(V) — D(V) with

Plp(a)r) = ap(z), Y(ap(r)) = P(a)z (4.21)

if a € Og,.,x € D(V) and moreover b commute with ['.
(2) If D is an étale (@, I')-module over Og,. or Ek, there exists a unique
operator v : D — D satisfying (1). Moreover, for any x € D,

v= Y [efe" (@) (4.22)

where z; = Y™ ([e]"'z).

Proof. (1) The uniqueness follows from Og ®,(0,) (D) = D. For the ex-
istence, consider ¢ on Og ® V'O D(V). D(V) is stable under 1 because v
commutes with Hg, 1) commutes with I'x because ¢ commutes with G, .
(2) Since D = D(V(D)), we have the existence and uniqueness of . (4.22)
follows by induction on n. O

Remark 4.31. From the proof, we can define an operator ¢ satisfying (4.21)
but not the commutativity of the action of I'x for any étale p-module D.

Ezample 4.32. For Og, D (92'0 = Ko[[r]], [e] =1+ 7e, let & = F(n,) € (92‘0,
then p(z) = F((1 + m.)? — 1). Write

p—1

F(rs) = S (U+m) E((1+ )P 1),

=0

then ¢(F(m.)) = Fo(me). It is easy to see if F(w.) belongs to W{[r.]], F;(m.)

belongs to W[[r.]] for all 4. Hence 1/1((92'0) C (92'0 = W(k)[[x]]. Consequently,

1 is continuous on & for the natural topology (the weak topology).
Moreover, we have:

e(Y(F)) =Fo((1 +me)” — 1) Z Z (1+ 7)) Fi((2(1 + m2))P = 1)

zP 14=0

7ZF (14 m)—1).

zpl

Proposition 4.33. If D is an étale p-module over Og,, then 1 is continuous
for the weak topology. Thus 1 is continuous for any an étale p-module D over
O¢ in the weak topology.

Proof. For the first part, choose ey, ez, -+ ,eq in D, such that

D = @(Ogo/p"i)ei, n; € NU {oo}.



134 4 The ring R and (¢, I')-module

Since D is étale, we have D = @(Og,/p")p(e;). Then we have the following
diagram:

D v D

| ]

D (O¢,/p")p(ei) —= P(Os, /P )es

Yo zip(es) —————= > P(wi)e;

Now since x +— () is continuous in Og,, the map 1) is continuous in D.
The second part follows from the fact that Og is a free module of Og, of
finite rank, and an étale p-module over Og¢ is also étale over Og,. a
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de Rham representations

5.1 Hodge-Tate representations

Recall the Tate module Z,(1) = T,(G,,) of multiplicative groups, choose a
generator t, then G acts on Z,(1) through the cyclotomic character x:

g(t) =x(9)t, x:Gx — Ly

For i € Z, the Tate twist Z, (i) = Zyt® is the free Z,-module with G g-action
through x*.

Let M be a Zy,-module and i € Z, Recall the i-th Tate twist of M is
M (i) = M ®z, Zy(i). Then

M — M@@), z—zot

is an isomorphism of Z,-modules. Moreover, if G acts on M, it acts on M (¢)
through ‘
9(x ®u) = gz @ gu = x"(9)gz @ u.

One sees immediately the above isomorphism in general does not commute
with the action Qf Gk.

Recall C = K.
Definition 5.1. The Hodge-Tate ring By is defined to be
. 1
Bur = 620(@) =Clt. 7]

where the element ¢ ® t' € C(i) = C @ Z,(i) is denoted as ct', equipped with
a multiplicative structure by

ettt = edtth,
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‘We have

“+oo
Bur C Bur = C((t) = { Y at',c; =0,if i < 0.}

1=—00

Proposition 5.2. The ring Bur is (Qp, Gk )-regular, which means that

(1) Byr is a domain;

(2) (Frac Byr) O = (BGx) = K

(3) For every b € Byur,b # 0 such that g(b) € Qpb, for all g € Gk, then b
is invertible. and BSK = K.

Proof. (1) is trivial.
(2) Note that Byy C Frac Byr C By, it suffices to show that (By.)®x =
K

Let b= Y ¢;t!, ¢; € C, then for g € Gk,
i€Z

g(0) = > gle)x* ()t

For all g € Gk, g(b) = b, it is necessary and sufficient that each c¢;t? is fixed by
G, ie., cit’ € O(i)9x. By Corollary 3.57, we have C“% = K and C(i)% = 0
if i # 0. This completes the proof of (2).

(3) Assume 0 # b =Y ¢;t* € By, such that

g9(b) =n(g)b, 1(g) € Qp, for all g € Gk.
Then g(c;)x*(9) = n(g)c; for all i € Z and g € Gk . Hence
glci) = (") (g)e:.

For all ¢ such that ¢; # 0, then Qc¢; is a one-dimensional sub Q,-vector space
of C stable under Gg. Thus the one-dimensional representation associated
to the character iy % is C-admissible. This means that, by Sen’s theorem
(Proposition 3.56), for all i such that ¢; # 0 the action of I through ny =% is
finite, which can be true for at most one i. Thus there exists ig € Z such that
b = ¢;,t" with ¢;, # 0, hence b is invertible in Byy. O

Definition 5.3. We say that a p-adic representation V of G is Hodge-Tate
if it is Byr-admissible.

Let V be any p-adic representation, define
Dyur(V) = (Bur ®g, V).

By Theorem 2.13 and Proposition 5.2,
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Proposition 5.4. For any p-adic representation V, the canonical map
aHT(V) : BHT ®K DHT(V) — BHT ®Qp V

is injective and dimg Dy (V) < dimg, V. V' is Hodge-Tate if and only if the
equality
dimg Dy (V) = dimg, V'
holds.
Proposition 5.5. For V to be Hodge-Tate, it is necessary and sufficient that

Sen’s operator © of W =V ®q, C be semi-simple and that its eigenvalues
belong to 7.

Proof. If V' is Hodge-Tate, then

W; = (C(i) ®g, V)9 (—i) @k C
is a subspace of W and W = @W,. One sees that Oy, is just multiplication
by i (cf Example 3.26). Therefore the condition is necessary.

To show this is also sufficient, we decompose W into the eigenspaces W;
of ©, where © is multiplication by ¢ € Z on W;. Then © = 0 on W;(—i) and
by Theorem 3.29, we have

Wi(=i) = (Wi(=i)®" ®k C.
Therefore

dimg Dype(V) > dimg (Wi (—i))9% =~ dime W; = dimg, V

and V' is Hodge-Tate. a

For a p-adic representation V', one sees that Dy is actually a graded
K-vector space since

Dor(V) = @ &' Dix (V). where g1 Dy (V) = (C(0) & V)
=y
Definition 5.6. The Hodge-Tate number of V is defined to be
hi = dim(C(—i) ® V).

Ezample 5.7. Let E be an elliptic curve over K, then V,(E) = Q, ®z, T,(E)
is a 2-dimensional Hodge-Tate representation, and

dim(C ®q, V,(E))¢% = dim(C(-1) ®q, V,(E))Sx = 1.
Then the Hodge-Tate number is (1g, 11).

Let V be a p-adic representation of G, define gr' D}, (V) = (L, (V, C(4))) ¥,
then ' 4
gr' Dy > (gr7 " Dy (VF))"

as K-vector spaces.

—

Remark 5.8. A p-adic representation V of Gk is Byr-admissible if and only if
it is Byr-admissible. This is an easy exercise.
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5.2 de Rham representations

Recall B = W (Fr R) [ﬂ S EW S € and W(R) C B. In this section, we shall
define the rings B, and Bar such that W(R) C Bj; C Bag.

5.2.1 The homomorphism 6.

Let a = (ag, a1, ,am, ) € W(R), where a,, € R. Recall that one can
write a,, in two ways: either

am = (a))rer, aff) € Oc, (a0 = af});

or
Am = (am,r)7 Am,r S Of/pa aﬁ@,r+1 = Qm,r-
Then a — (ao,n,@1n, " ,an—1,n) gives a natural map W(R) — W, (Ox/p).
For every n € N, the following diagram is commutative:
Wit1(O%/p)
ey

where f,((zo, 1, ,2,)) = (xh,---,2b_,). It is easy to check the natural
map

W(R) = lim W, (O /p) (5.1)

fn

is an isomorphism. Moreover, It is also a homeomorphism if the right hand
side is equipped with the inverse limit topology of the discrete topology.
Note that O/p = O¢/p. We have a surjective map

Wn-‘rl(OC)_) n(Of/p)v (Clo,"' aan)’_’(dOW" aan—l)-
Let I be its kernel, then
I= {(pb[)apbh T 7pbn717an) | biuan S OC}

Let wpt1 @ Wipt1(O¢) — Oc¢ be the map which sends (ag,aq, - ,a,) to
1

agn + paﬁ’n + -+ + p"a,. Composite w,1 with the quotient map Oc —
Oc¢/p™, then we get a natural map W;,41(O¢) — O¢/p™. Since

W1 (Pbo, ++ s Pbr—1,an) = (pbo)?" + -+ p" " (pby_1)? + p"an € p"Oc,

there is a unique homomorphism

n—1
0n: Wi (Og/p) = Oc/p", (ag,ar,-+ ,an1) = »_pla" " (5.2)
=0
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such that the following diagram

Wn41

Wnt1(Oc¢) Oc¢

| l

O
Wi (Og/p) —— Oc/p" = Og/p"

is commutative. Furthermore, we have a commutative diagram:

971 1
Wo1(O%/p) ——= Oc /p™*

c

Wi (O%/p) b 0 /"

Thus it induces a homomorphisms of rings
0:W(R) — Oc¢. (5.3)

Lemma 5.9. If x = (zo,21,* ,&n,-++) € W(R) for z, € R and z, =

(xglm))meN; lngm) € O¢, then

+oo
O(z) = Zp":zrgl”). (5.4)
n=0

Thus 0 is a homomorphism of W -algebras.

Proof. Forx = (xg,x1,- - ), the image of x in W, (O%/p) is (To,ns T1,ns > Tn—1,n)-
(n)

We can pick z; ' € O¢ as a lifting of z; ,,, then

n—1 n—1 ____
6n(x0,n7 . 71'n—1,n) _ Zpi(xz(ln))pnfi _ szxl(l)
=0 =0
since (:1:1(-"))1’7' = xgnfr). Passing to the limit we have the lemma. O

Remark 5.10.If for x € W(R), write  as x = ) p"[z,]| where z,, € R and
[] is its Teichmiiller representative, then we have

+oo
O(z) = Zp"a:%o). (5.5)
n=0

Proposition 5.11. The homomorphism 0 is surjective.

Proof. For any a € Og, there exists € R such that 2(®) = a. Let [z] =
(x,0,0,---), then 0([z]) = z(© = a. -
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Choose @w € R such that w(® = —p. Let ¢ = [w] +p € W(R). Then
¢ = (@,1,0,---) and by Lemma 5.9, (&) = @@ +p = 0.

Proposition 5.12. The kernel of 68, Ker 0 is the principal ideal generated by
&. Moreover, [(Ker6)™ = 0.

Proof. For the first assertion, it is enough to check that Ker 6 C (¢, p), because
O¢ has no p-torsion and W (R) is p-adically separated and complete. In other
words, if z € Ker 6 and x = yg + px1, then 6(x) = pf(x;), hence x; € Ker .
We may construct inductively a sequence x,_1 = &Yn_1 + pTy,, then z =

§EQ_P"Yn)-

Now assume = = (zg,z1, - ,Tpn, ) € Kerf, then

0=0(x) =2 +p p" 'z,

n=1

Thus v(xéo)) > 1 = v,(p), so v(zg) > 1 = v(w). Hence there exists by € R
such that xg = bpwo. Let b = [bg], then

x*bfi(lﬂo,xl,"')*(b,O,“‘)(w,l,O,"‘)
:(zo—bow,'-') = (anlvaa"')
:p(yivy/%) EpW(R)a

where (y))? = y;.

For the second assertion, if x € (Kerf)™ for all n € N, then vg(z) >
vR(£") > n. Hence 7 = 0 and = = py € pW(R). Then pf(y) = 6(x) = 0 and
y € Kerf. Replace x by z/£", we see that y/¢" € Ker6 for all n and thus
y € [(Ker 8)™. Repeat this process, then z = py = p(pz) = --- = 0. O

5.2.2 The rings BIR and Bgr.

Note that Ko = FracW = W[%], let

W(R) [%] — Ko ow W(R).

We can use the map @ — 1 ® x to identify W(R) to a subring of W (R) [ﬂ
Note
1 = —n 3 —n
W(R)[=] = | W(R)p™" = lim W(R)p".
p n=0 neN
Then the homomorphism 6 : W(R) - O¢ extends to a homomorphism of

Ky-algebras 6 : W(R) [%] — C which is again surjective and continuous. The
kernel is the principal ideal generated by &.
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Definition 5.13. (1) The ring BJ is defined to be

By = lim W(R) []/(Ker0)" = lim W(R)[~] /(). (5.6)
neN p neN p

(2) The field Bar is defined to be

1
Bgr = Frac Bf; = Bjy [g] (5.7)
Since Ker 6 is a maximal ideal, which is principal and generated by a non-
nilpotent element, B(J{R is a complete valuation ring whose residue field is C,

and Bgr is its valuation field.

Remark 5.14. Be careful: there are at least two different topologies on B(TR
that we may consider:
(1) the topology of the discrete valuation ring;
(2) the topology of the inverse limit with the topology induced by the
1

topology of W(R) [5] on each quotient.

We call (2) the canonical topology or the natural topology of B(J{R. The
topology (1) is stronger than (2). Actually from(1) the residue field C' is
endowed with the discrete topology; from (2), the induced topology on C' is
the natural topology of C.

Since () "W (R) [%] = 0, there is an injection
n=1

1
W(R) []ﬂ — Big-
We use this to identify W (R) and W (R) [%] with subrings of Biy. In partic-
ular, Ky = W[%] is a subfield of BIR.
Let L be any finite extension of K inside K. Set W (R) = L ®@w W(R)
(hence Wi, (R) = W(R) [%] ). The surjective homomorphism 0 : Wi, (R) - C

can be extended naturally to 6 : Wr(R) — C, whose kernel is again the
principal ideal generated by . Moreover, we have a commutative diagram

Wk, (R) —2— C

incll Idl

W.(R) —— C

Set
B, = lim Wi(R)/(Ker )" = lim W (R)/(€)". (5.8)
neN neN

Then the inclusion Wy, (R) < W (R) induces the inclusion Bi; — BQ_R, I
However, since both are discrete valuation ring with residue field C, the in-
clusion is actually an isomorphism. This isomorphism is compatible with the
G k,-action. By this way, we identify B:{R with Bg‘R’ 5, and hence K C B$R.
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Remark 5.15. Let K and L be two p-adic local fields. Let K and L be algebraic
closures of K and L respectively. Given a continuous homomorphism h : K —
L, then there is a canonical homomorphism Bar (k) : Biz (K) — Bji (L) such
that Bggr(h) is an isomorphism if and only if & induces an isomorphism of the
completions of K and L.

From this, we see that Byr depends only on C' not on K.

By Theorem 0.21, we have the following important fact:

Proposition 5.16. For the homomorphism 0 : B(J{R — C' from a complete
discrete valuation ring to the residue field of characteristic 0, there exists a
section s : C — By which is a homomorphism of rings such that 6(s(c)) = ¢
forallce C.

The section s is not unique. Moreover, one can prove that

Exercise 5.17. (1) There is no section s : C' — Bj; which is continuous in
the natural topology.
(2) There is no section s : C — Bj; which commutes with the action of

Gk.
In the following remark, we list some main properties of Byg.

Remark 5.18. (1) Assume K C Bjj. Note that k is the residue field of K,
as well as the residue field of R, and & C R (see Proposition 4.7). Thus

W (k) € W(R). Let
Py = W (k) [%] = Frac W (k),

which is the completion of the maximal unramified extension of K in C. We
have

Py C W(R) [%], and Py C C

and @ is a homomorphism of Py-algebras. Let P = PyK which is an algebraic
closure of Py, then
P cC B
and 6 is also a homomorphism of P-algebras.
(2) A theorem by Colmez (cf. appendix of [Fon94a]) claims that K is
dense in B(TR with a quite complicated topology in K induced by the natural

topology of B(;FR. However it is not dense in Byg.

(3) The Frobenius map ¢ : W(R) [%] — W(R) [%] is not extendable to a

continuous map ¢ : Biy — Bii. Indeed, 0([w!/?] + p) # 0, thus [@!/P] + p is
invertible in B:{R. But if ¢ is the natural extension of the Frobenius map, one
should have ¢(1/([@'/?] +p)) = 1/¢ ¢ Bii.

(4) For any i € Z, let Eili Bgr be the i-th power of the maximal ideal
of B;‘R. Then if 7+ > 0, Fil' Bqr, = m;:R. For 7 € Z, Fil' Bgr is the free
Bj-module generated by &, i.e.,

Fil' Bar = Bjg¢", Fil’ Bar = Bj. (5.9)
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5.2.3 The element t.

Recall the element € € R given by ¢(®) =1 and ¢ # 1, then [¢] — 1 € W(R)
and
O(e] - 1) =@ —1=0.

Thus [¢] — 1 € Ker6 = Fil' Bag. Then (—1)"**{E=0% € w(R)[2]¢" and
- . gl —-1)"
logle] = > (~1) L“% € Bix. (5.10)
n=1

We call the above element ¢ = log]e].
Proposition 5.19. The element

t € Fil' Byr and t ¢ Fil® Byg.
In other words, t generates the mazimal ideal of B(TR.
Proof. That t € Fil' Bqg is because

([e] - D"

€ Fil' Byg for all n > 1.

Since

(el =1)

! € Fil? By if n > 2,
to prove that t ¢ Fil® Byg, it is enough to check that
[e] — 1 ¢ Fil®> Byg.

Since [e] — 1 € Ker 0, write [¢] — 1 = A\ with A € W(R), then

[e] — 1 ¢ Fil? Bgr <= 0(\) # 0 <= X\ ¢ W(R).
It is enough to check that [¢] — 1 ¢ W(R)£2. Assume the contrary and let
[e] — 1 = A2 with A € W(R). Write A = (g, A1, A2, -+ ). Since

£ =(@,1,0,0,---), & =(x% ),

we have \é2 = (A\gw?, -+ ). But

] —1=(s0,0,---)—(1,0,0,---) = (e —1,--),
hence € — 1 = Agw? and

vie—1) > 2.

We have computed that v(e — 1) = -2 (see Lemma 4.13), which is less than
2 if p # 2, we get a contradiction. If p = 2, just compute the next term, we

will get a contradiction too. O
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Remark 5.20. We should point out that our ¢ is the p-adic analogy of 2mi € C.
Although exp(t) = [¢] # 1 in Bl,, 0([]) =1in C = C,,.

Recall Z,(1) = T,(G,,), viewed additively. Let Z,(1)* = Z,(1), viewed
multiplicatively. Then Z,(1)* = {e* : A\ € Z,} is a subgroup of U (cf.
Proposition 4.15), and Z,(1) = Z,t C Biz. We have

log([g]*) = Alog([e]) = At.
For any g € Gk, g(t) = x(g)t where x is the cyclotomic character. Recall

Fil' Bar = Bjpt' = Bz (i)

and ) )
Bqr = BIR[E] = BSLR[EL
Then
gr BdR = @ gI‘i BdR = @ Flll BdR/ Fﬂi—H BdR
i€Z i€Z
=D Bin)/tBf () = P ).

i€Z i€Z

Hence

Proposition 5.21. gr Bar = Bur = C(t, 1) C Bur = C((t)).

Remark 5.22. If we choose a section s : C' — B;{R which is a homomorphism
of rings and use it to identify C' with a subfield of B(YR, then Bgr ~ C(()).
This is not the right way since s is not continuous. Note there is no such an
isomorphism which is compatible with the action of Gx.

Proposition 5.23. BdGF{{ =K.

Proof. Since K C K C BQ‘R C Bgr, we have
—Gx Gk
KCK =~ C---CBgy.

Let 0 £ b€ B(?P{ﬂ we are asked to show that b € K. For such a b, there exists
an 7 € Z such that b € FﬂinR but ll¢ Fil'™* Bygr. Denote by b the image of
bin gr' Bgr = C(i), then b # 0 and b € C(i)9%. Recall that

, 0, i#0,
C(i)%x = {K o

then i = 0 and b € K C Bj. Now b —b € B and b — b € (Fil' Bgr)®* for
some ¢ > 1, hence b — b = 0. O
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5.2.4 Galois cohomology of Bggr

Suppose K is a finite extension of K. Recall that we have the following:

Proposition 5.24. For i € Z, then

(1) if i #£0, then H"(Gk,C(i)) = 0 for all n;

(2) if i = 0, then H*(Gg,C) = 0 for n > 2, H'(Gg,C) = K,
and HY(Gg,C) is a 1-dimensional K-vector space generated by logy €
HY(Gk,Ko). (ie, the cup product x — x Ulogx gives an isomorphism
H°(Gg,C) ~ HY Gk, O)).

Proof. For the case n = 0, this is just Corollary 3.57.

We claim that H"(Hg,C(i))'s = 0 for n > 0. Indeed, for any finite
Galois extension L/K, let o € L such that Try k() = 1 and let ¢ €
H"(L/Ky,C(i)%"). Set

g gn) = > G192 gnah(@)e(gr, - gno1,h),
hEGal(L/Kao)

then d¢/ = ¢. Thus H"(Hg, C(4)) = 0 by passing to the limit.
For n = 1, using the inflation and restriction exact sequence

0 — HY(Tg,C(0)") 2L HY (G, C(i) = HY (Hg, C(i))F%.

Then the inflation map is actually an isomorphism. We have C(i)Hx = Koo (7).
Now I?Oo = K,, ® X,, where X,, is the set of all elements whose normal-
ized trace in K,, is 0 by Proposition 0.97. Let m be large enough such that
v (X(Ym) —1) > d, then x(Vm)*ym — 1 is invertible in X, by Proposition 0.97.
We have

Ko K ® X, Ko,

H' (T, Koo(i)) = — = S .
( (@) Xem)ym =1 X (vm)vm — 1 X (ym)ym — 1

Thus

o K, ifi=0;
H'(I'k, , Koo(i)) = {0 ifi #0

Since IA(OO(Z) is a K-vector space, in particular, # Gal(K,,/K) is invertible,
we have

HI (Gal(K ) K), Koo (i) S Em/K)y — 0, for j > 0.
By inflation-restriction again, H'(Tx, Koo (i)) = 0 for i # 0 and for i = 0,
K=H"Tg,Ky)=H'(Tg,K) =Hom(Tx,K) = K -log X,

the last equality is because I' i = Z,, is pro-cyclic.
For n > 2, H"(Hg,C(i)) = 0. Then just use the exact sequence

11— Hg —Gg —IT'x —1

and Hochschild-Serre spectral sequence to conclude. a
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Proposition 5.25. Suppose i < j € ZU {£oo}, then if i > 1 or j <0,
HY Gk, t'Big/t Big) = 0;
if1 <0 and j >0, then x — x Ulog x gives an isomorphism
HY(Gr, t'Bi/t Biz)(~ K) = HY(Gk,t' B /t' Blp).

Proof. For the case i,j finite, let n = j — i, we prove it by induction. For
n =1, t'Bi, /t"" 1 Bi; ~ C(i), this follows from Proposition 5.24. For general
n, we just use the long exact sequence in continuous cohomology attached to
the exact sequence

0 — C(i+n) — t'Bip /t"V""' Bl — t'Big /t"""Biz — 0

to conclude.
By passage to the limit, we obtain the general case. a

5.2.5 de Rham representations.

Note that Bgr is a field containing K, therefore containing Q,,, and is equipped
with an action of Gk. It is (Qp, Gk )-regular since it is a field. That is, for
any p-adic representation V' of G, let Dar(V') = (Bar ®q, V)&% | then

agr(V) : Bar @k Dar(V) — Bar ®q, V
is injective.
Definition 5.26. A p-adic representation V' of Gk is called de Rham if it is

Byar-admissible, equivalently if aqr (V) is an isomorphism or if dimg Dar (V) =
dime V

Let Filg be the category of finite dimensional K-vector spaces D equipped
with a decreasing filtration indexed by Z which is exhausted and separated.
That is,

° Fill: D are sub K-vector spaces of D,
e Fil'"'D CFil' D, 4
e FiI'D=0fori>0,and Fil' D = D for i < 0.

A morphism
n:D1— Dy

between two objects of Filx is a K-linear map such that
n(Fil' Dy) C Fil’ Dy for all i € Z.
We say 1 is strict or strictly compatible with the filtration if for all i € Z,
n(Fil’ D;) = Fil* Dy N Im .

Filg is an additive category.
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Definition 5.27. A short exact sequence in Filg is a sequence

[0}

O—>D/—>DLD”—>O

such that:
(1) @ and B are strict morphisms;
(2) « is injective, (B is surjective and

a(D'y={x e D|p(z) =0}
If Dy and D5 are two objects in Filg, we can define D1 ® Dy as
e D;® Dy =D ®k Dy as K-vector spaces;
e Fil'(Dy®Dy)= > Fil" Dy ®k Fil"? Ds.
11 +i2=1
The unit object is D = K with
. K, i<
U
0, 1> 0.

If D is an object in Filg, we can also define its dual D* by

e D*=Y2%(D,K) as a K-vector space;

147

e Fil' D* = (Fil"' D)t = {f: D — K | f(x) = 0, for all = € Fil~"*' D}.

If V is any p-adic representation of G, then Dgr (V) is a filtered K-vector

space, with ' 4
Fil' D4r(V) = (Fil' Bar ®g, V).

Theorem 5.28. Denote by Repg:(GK) the category of p-adic representa-
tions of Gx which are de Rham. Then Dgr : Rep(%l:‘(GK) — Filg is an

exact, faithful and tensor functor.

Proof. One needs to show that

(i) For an exact sequence 0 — V' — V — V" — 0 of de Rham represen-

tations, then
0— DdR(V/) — DdR(V) — DdR(V”> — 0

is a short exact sequence of filtered K-vector spaces.
(ii) If V1, V4 are de Rham representations, then

Dar(Vi) ® Dar(V2) — Dgr(Vi @ Va)

is an isomorphism of filtered K-vector spaces.
(iii) If V' is de Rham, then V* = %5 (V,Q,) and

D4r(V™) = (Dgr(V))*
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as filtered K-vector spaces.
For the proof of (i), one always has
0 — Dgr(V’) = Dar(V) — Dar(V"),
the full exactness follows from the equality
dimg Dgr (V) = dimg Dgr(V’) + dimg Dar (V").

For (ii), the injections V; — V4 ® V5 induces natural injections Dyg(V;) —
Dar (V1 ® V2), thus we have an injection

Dar (V1) ® Dar(V2) — Dar(Vi ® Va).

By considering the dimension, this injection must also be surjective and V; @ Vs
must be de Rham.
(iii) follows from

Dar(V*) =(Bar ©q, Homg, (V,@,))“* = Homp,, (Bir ©q, V; Bar)“*
= Homg ((Bar ®q, V)GK,K) =Dar (V)"

Let V be a de Rham representation. By the above Theorem, then
(Fil't" Bar ®q, V)% = Fil'™ Dgr(V).
For the short exact sequence
0 — Fil"™ Byg — Fil’ Bgg — C(i) — 0,
if tensoring with V' we get
0 — Fil'™ Byr ®g, V — Fil' Bar ®q, V — C(i) ®g, V — 0.
Take the Gi-invariant, we get
0 — Fil'™ Dgr (V) — Fil' Dar(V) — (C(i) ®q, V)“¥.
Thus
gr' Dar (v) = Fil' Dag(V)/ Fil'™ Dar(V) < (C(i) ®q, V)*.
Hence,

P er' Dar(v) — P(C(i) @q, V) = (Bur ®g, V)*.
i€Z i€Z

Then
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Proposition 5.29. A p-adic representation V' is de Rham implies that V is
Hodge-Tate and

dimg Dgr(V) = Z dimg gr' Dar (V).
i€Z

Proposition 5.30. (1) There exists a p-adic representation V of Gk which
is a nontrivial extension of Qu(1) by Q,, i.e. there exists a non-split exact
sequence of p-adic representations

0—-Q, =V —Qp1) —0.

(2) Such a representation V is a Hodge-Tate representation.
(8) Such a representation V is not a de Rham representation.

Proof. (1) It is enough to prove it for K = Q, (the general case is by base
change Q, — K). In this case Ext'(Q,(1),Q,) = H} .. (Qp, Qy(—1)) # 0 (by
Tate’s duality, it is isomorphic to H} (K,Q,) = Q,) and is nontrivial. Thus
there exists a nontrivial extension of Q,(1) by Q,.

(2) By tensoring C(i) for i € Z, we have an exact sequence

0— C(i) = V®g, C(i) = C(i+1) — 0.
Thus we have a long exact sequence by taking the G g-invariants
0 — C(i)9% — (V ®q, C(i))°" — C(i +1)9% — H' (G, C(i)).

If i #0,—1, C(i)¢% = C(i + 1)9% = 0 (cf. Proposition 5.24), thus (V ®q,
C(i))9x =0.If i = 0, C9% = K, C(1)9% = 0 and hence (V ®q, C)°% =
K. Ifi = —1, O(=1)%% =0, 0% = K and H'(Gg,C(—1)) = 0, hence
(V ®q, C(—1))9< = K. Thus V is Hodge-Tate.

(3) is not so easy! We shall prove it at the end of § . O

Remark 5.81. Any extension of Q, by Q,(1) is de Rham. Indeed, by the exact
sequence 0 — Q,(1) — V — Q, — 0, the functor (Bjy ®g, —)“* induces a
long exact sequence

0 — (tBiR)“* =0 — (Bjg ®q, V)" — K — H'(Gk,tBy).

By Proposition 5.25, H' (G, tBjy) = 0. Hence Dar(V) — (Biz ® V)% —
K = Dgyr(Q,) is surjective. Thus dimx Dgr (V) = 2 and V is de Rham.

5.2.6 A digression.

Let E be any field of characteristic 0 and X a projective (or proper) smooth
algebraic variety over E. Consider the complex

“Q;(/E :Ox/5 — Q%(/E - “Q?(/E —
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define the de Rham cohomology group Hj (X/E) to be the hyper cohomology
H™(£2% ) for each m € N, then it is a finite dimensional E-vector space
equipped with the Hodge filtration.

Given an embedding ¢ : E — C, then X (C) is an analytic manifold. The
singular cohomology H™ (X (C), Q) is defined to be the dual of H,,(X(C),Q)
which is a finite dimensional Q-vector space. The Comparison Theorem claims
that there exists a canonical isomorphism (classical Hodge structure)

C o H™(X(C),Q) ~ Cop Hir(X/E).

We now consider the p-adic analogue. Assume E = K is a p-adic field
and / is a prime number. Then for each m € N, the étale cohomology group
Hi (X% g,) is an f-adic representation of G'x which is potentially semi-stable
if £ # p. When £ = p, we have

Theorem 5.32 (Tsuji [Tsu99], Faltings [Fal89]). The p-adic represen-
tation HZ (X7, Qp) is a de Rham representation and there is a canonical
isomorphism of filtered K -vector spaces:

Dar (Het (X7, Qp)) = Hip (X/K),
and the identification
Bar ®q, HE (X5, Qp) = Bar ®x Hig (X/K)
gives rise to the notion of p-adic Hodge structure.

Let £ be a prime number. Let Gg = Gal(Q/Q). For p a prime number,
let G, = Gal(Q,/Q,) and I, be the inertia group. Choose an embedding
Q — Q,, then I, C G, — Gq.

Definition 5.33. An (-adic representation V of Gg is geometric if

(1) It is unramified away from finitely many p’s: let p : Gg — Autg, (V) be
the representation, it unramified at p means that p(I,) =1 or I,, C Ker p.
(2) The representation is de Rham at p = ¢.

Congecture 5.34 (Fontaine-Mazur [FM95]). Geometric representations are ex-
actly “the representations coming from algebraic geometry”.

5.3 Overconvergent rings and overconvergent
representations

In this section, we let
A=0g, B =g,

A=W(FrR), B = Frac(A) = W(Fr R) m :
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5.3.1 The rings of Overconvergent elements.
+oo | ~
Definition 5.35. (1) Forx = ) p'lx;] € A, z; € Fr R, k € N, define
i=0
wi(x) = 11151£v(x1)
(2) For a real number r > 0, define

0"l (z) = inf (wk(a:) + k) = inf (v(xk) + fj) e RU {£o0}.

r

(3) Define
A0 .= fr e A: lim (v(zy) + ﬁ) = lim (wi(z)+ ﬁ) = +oo}.
k—+o0 r k—+o0 r
One checks easily that for « € Fr R, wi(z) > v(a) if and only if [a]z €
W(R) + p**+1A.

Proposition 5.36. A0 g g ring and v = v® "1 satisfies the following prop-
erties:

(1) v(z) =400 <z =0;
(2) v(zy) = v(z) +v(y);
(3) v(z +y) = inf(v(x), v(y));
(4) v(pr) = v(z) + 3
(5) v([a]z) = v(a) + v(x) if « € Fr R;
(6) vg(z) = v(a) i 4 € Gy
(7) v OP T (p(a)) = p® ().
Proof. This is an easy exercise. a

+o00 ~

Lemma 5.37. Given x = Y p*[xx] € A, the following conditions are equiv-
k=0

alent:

+oo
(1) Zopk [x1] converges in Bin;

(2) Z p*z” converges in C;
(5’) hm (k +v(xy)) = +oo;
(4) x € A 0,11,

Remark 5.38. We first note that if # € FrR, then [v] € Bj;. Indeed, let
v(x) = —m. Recall £ = [w] + p € W(R), where w € R and 1?0) = —p,is a
generator of Kerf. Then x = w™ ™y for y € R. Thus

[ﬂ=mrwm=fw§—w%MeB&~
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Proof. (3) < (4) is by definition of A7, (2) < (3) is by definition of v. (1)
= (2) is by continuity of 6 : BJ; — C. So it remains to show (2) = (1).
We know that

ar =k + [v(xg)] — o0 if k — +o0.

Write z, = w® ~*y,, then y; € R. We have

k
k = L |4k — Ok §_ ar—k
Pl = () 1 td =7 - 07 ¥l

By expanding (1 — z)! into power series, we see that

ap—k
Pk (f; — 1) € p* "W (R) + (Ker g)m+t

for all m. Thus, a;, — +oo implies that p*[zx] — 0 € By /(Ker6)™*! for
every m, and therefore also in B;{R by the definition of the topology of B(J{R.
O

Remark 5.39. We just proved that A1 = B:R N Z, and we can use the
isomorphism

n

o A0 2, F(0.1]

to embed A7) in By, forr > p=m.
Define

At = U AT — 4 e A: o () converges in By for n > 0}.
r>0

+oo ~
Lemma 5.40. x = Y pFlxy] is a unit in AT if and only if xo # 0 and
k=0
v(3E) > —% for all k > 1. In this case, 0O (z) = v(z) = v(zg).
—+o0
Proof. The only if part is an easy exercise. Now if z = >_ p¥
k=0

[1] is a unit in

~ +oo
AT suppose y = 3" pFlyw] is its inverse. Certainly zg # 0. As
k=0

li ()+k—+ li ()+k—+
P V) = oo, g vl + g = o,

there are only finite number of x; and y; such that v(zy) + % = (071 (z) =
v(z) and v(z;) + £ = v"(y) = v(y). Suppose m,n are maximal such that
0(Tm) + 2 = v(z) and v(y,) + 2 = v(y). Compare the coefficients of p"*" in
xy=1,if m+n > 1, then
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[xnz-ﬁ-n] + -+ [xmyn} + - [ym-‘rn} =0.

Hence
m-+n . m-+n m-+n
U(wmyn> + r > i+;ggbl+n{v($iyj) + T} > U(xmyn) + r )
i#£m
a contradiction. Thus m = n = 0 and for k > 0, v(zy) + & > v(zg) or
equivalently, v(;—’g) > —%. O
Set

Bor = gonly | pm A,
p neN

endowed with the topology of inductive limit, and

Bt = BO,
r>0

again with the topology of inductive limit. Bt is called the field of overcon-
vergent elements.
By the above lemma, we have

Theorem 5.41. Bl is a subfield of E, stable by ¢ and Gk, , both acting con-
tinuously.

Proof. We only prove that non-zero elements are invertible in Bt. The conti-
nuity of ¢- and G, -actions is left as an exercise.

+o0o ~
Suppose x = . pF[i] € BO" with xy, # 0, then 2 = p* [z, ]y with
k=ko

+o0 ~
y =S pFlyr] € BO"T and yo = 1. It suffices to show that y is invertible in
k=0

Bt Suppose v(%7)(y) > —C for some constant C' > 0. Choose s € (0,7) such
that L —1 > C. Then v(yx) + £ > v(yx) + £ + kC > 0 if k > 1. By the above

lemma, y is invertible in A, O

From now on in this chapter, we suppose L is a finite extension of Ky and
F'=F] =LY N KJ".

Definition 5.42. (1) Bt = Btn B, At = A1 N B (so B' is a subfield of B
stable by ¢ and Gy, ), A1 = A0 B,

(2) If A € {A,B, Al Bt At Bt A©:7]_ BO-TY " define A, = AHr. For
example Ax = Og and Agg’ = 401 O¢.

(8) If A € {A,B,A", B, ACTI BONand n € N, define Ay, =
p"(AL) C B.
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We want to make Ag)’T] more concrete. We know that

+oo
Ak, = Ogy, =W ((m.)) = { Z ATl | An € W, A, — 0 when n — oo},

—

and Bk, = Ko((m:)), where 7. = [¢] — 1.
Consider the extension Ep,/Ey. There are two cases.

(1) If EL/Ep is unramified, then Ep = k'((7)) (recall m = ¢ — 1) where &’ is
a finite Galois extension over k. Then F’ = Frac W (k') C L%° and

—+o0
Ap = 0¢ = { Z ATl | An € Opr = W(K'), A\, — 0 when n — oo} .

n=—oo

Let 7, = m. in this case.

(2) In general, suppose the residue field of Ep, is k¥’. Then F’ = Frac W (k') C
L. Let 7y, be a uniformizer of Ef, = k'((7)), and let Pr(X) € Ep/[X] =
E'((m))[X] be a minimal polynomial of 7r. Let Pr(X) € Op/[n.][X] be a
lifting of Pr. By Hensel’s lemma, there exists a unique 7y € Ay such that
Pp(7,) =0 and 7y, = 7, mod p.

Lemma 5.43. If we define

1, if in case (1),
T =
g (2v(D))~Y,  otherwise .

where © is the different of Er/Ep/, then wr, and Pj(7y) are units in A(LO’T]
forallO <r <rg.

Proof. We first show the case (1). We have 7. = [e — 1] + pla1] + p?[z2] + -+,
where x; is a polynomial in "' —1 with coefficients in Z and no constant term.
Then v(z;) > v(e?  —1) = W. This implies that 7. = [e—1](1+pla1]+
p?lag] + -+ +), with v(a1) = v(z1) —v(e —1) > —1 and v(a;) > —v(e —1) > —i
for i > 2. By Lemma 5.40, 7. is a unit in AS:O’T] for 0 <r < 1.

In general, we have 7, = [rz] + p[ai] + p*lag] + -+ and v(m) = Lo(r) =
—L - where e = [Fr, : Es] is the ramification index. Then v(£%) > —v(wp) =

e(p—1) P
fﬁ. Thus 7y is a unit A(LO’T] for 0 < r < @. It is easy to check

—1 _
% > (2v(®Dp,/B,,) 17-,

Similarly, P; (7)) = [P (7r)] + p[B1] +p2[ﬁ2} + .-+, and

o
Pp(rr)

while the last equality follows from Proposition 0.73. Thus P (71) is a unit
A([?’T] forO<r< (QU(BDEL/EF,)—l, O

)2 —0o(PL(r1)) = —v(Dp, /5, )



5.3 Overconvergent rings and overconvergent representations 155

Let s: Ef, — Ayp be the section of x — Zmod p given by the formula

s <Z akw§> = a7} (5.11)

kEZ kezZ

For x € Ay, define {x,, }nen recursively by xg = z and 41 = %(asn —s(Z,)).
Then z = 372 p"s(%,). By this way,

A = {Z anTy  an € O, lim v(an) = +oo} (5.12)
nez

Lemma 5.44. Suppose x € Ar. Then
(1) If k € N, wi (=22 > min(wy 41 (), wo(z) — 1),

(3) If define z,, as above, then forn € N, v(Z,) > ming<;<n, (w; () — ==1).

TL

Proof. We first note that, since 7y, is a unit in A(LO’T}, ifye Epand0<r <rp,
then s(g) € A and v(©7](s(7)) = v(y). Thus

wy, (gc_s(x)) = wyt1(z — s(Z)) > min <wk+1($),v(x) ket 1)

p TL

Now (1) follows since wg(z) = v(T).

By (1), wi(2nt1) = min(wgi1(2,), wo(x) — 1%1 By induction, one has
. . k4+n—1
> () — )
wg(2,,) > min (wk+n(x), omin w;(x) - >
Take k = 0, then (2) follows. O

Proposition 5.45. (1) If 0 <r < rp, then

AP = {f(71) = Y ik ax € Op, T (v(ar) + () = +oo}.
keZ
(5.13)

In this case, one has

keZ \'r

WO n)) = fut (Fotan) + ko) ). (5.14)

(2) The map f +— f(wr) is an isomorphism from bounded analytic functions
with coefficients in F' on the annulus 0 < v,(T) < rv(mwy) to the ring B(LO’ i
Proof. (2) is a direct consequence of (1). Suppose z = Y, ., a;75. One can
write az7¥ in the form pU(@*)[7%.]u where u is a unit in the ring of integers of
A©7] Hence v (ap7h) = kv(wL)Jr@. Ifk lim (v(ak)+rkv(mL)) = +oo,

then z = Y, , ax®h converges in A" and v(®")(z) > ’icng(%v(ak) +kv(mp)).
€
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On the other hand, if 2 € A7) suppose (z,)nen is the sequence
constructed as above, and suppose vy, min (w;(z) + ). By

v(mr) 0<i<n T
Lemma 5.44, one can write T, as T, = Y. an’kwf and one has z =
k>vn
~k
> okez GkTE, where ap = ) p"lag,] € Op and Iy = {n € N | v, < k}.

nely
The p-adic valuation of aj is bigger than or equal to the smallest element
in I. But by definition, v, < k if and only if there exists ¢ < n such that
w;(x) + =" < kv(mr), in other words, if and only if there exists i < n such

that , ) ) )
w;(z) + % +(n—9) < - ) < = (kro(rr) +n).

r rr r
One then deduces that

v(ag) + krv(nr) > r min <(wl(a:) + %) +(n— z)<1 - 1)) ’

0<i<n roorL

This implies klim (v(ag) + rkv(ny)) = +oo and vO7)(z) < Iign%(%v(ak) +
——00 S

k’U(T(L)). O

Corollary 5.46. (1) A(LO’ s a principal ideal domain;
(2) If L/M is a finite Galois extension over K, then A(LO’T} is an étale
extension of Ag&’ "] if r <rp, and the Galois group is nothing but Hy /Hy,.

Define 7, = ¢~ "(7.), Tr.n = ¢ "(71). Let L,, = L(¢™) for n > 0.

Proposition 5.47. (1) If p"rp > 1, (7L n) is a uniformizer of Ly;
(2) Trn € Ln[[t]] C Bix.

Proof. First by definition
Tn =[P ] =1 =eMetP" —1 € Ky ,[[t] € Big,

where [e}/P"] = e(Met/P" follows from that the 6 value of both sides is £(™)
and the p"-th power of both side is [¢] = e’ (recall ¢ = log[e]). This implies
the proposition in the unramified case.

For the ramified case, we proceed as follows.

By the definition of Er, 7, = 6(7L,) is a uniformizer of L, moda =
{z:vp(x) > %} Let wy, be the image of 7, ,, in L, mod a. So we just have to
prove 7y, € Ly,.

Write
d

PL(m) = Zai(ﬂ-e)wi’ ai(ﬂ-E) € OF’[[WE]]'

Define
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then P, ,(7p,n) = 0(¢(Pr(7r))) = 0. Then we have v(Pp ,(wy)) > = and

D =

| i 1 I
U(Pi’n(wn)) = F”(Pi(WL)) = EU(DEL/EO) < % if p"rp > 1.

Then one concludes by Hensel’s Lemma that 7p, ,, € L.
For (2), one uses Hensel’s Lemma in L, [[t]] to conclude 7, ,, € Ly [[t]]. O

Corollary 5.48. If 0 < r < ry, and pr > 1, o~ (A""™) C L, [[t]] € B,

5.3.2 Overconvergent representations
Suppose V is a free Z,-representation of rank d of Gk . Let
DO(V) = (A T @y, V)T C D(V) = (A®g, V).

This is a Ag?’ "_module stable by I'x. Moreover, we have the Frobenius map
2
¢ : DO (V) — DO (V).

Definition 5.49. V is a overconvergent representation over K if there exists
an ry > 0,ry < rg such that

Ag ®A<0vrvl DOmvl(v)y = D(V).
K
By definition, it is easy to see for all 0 < r < ry,
T 0,r T
DO(V) = 40" ®A(£,,,V] DOy,

If V is overconvergent, choose a basis {ej,--- ,eq} of D(OP") (V) over A(}g,pr)

for pr < ry, then x € D" (V) can be written as >, z;¢(e;), we define the
valuation v(®"] by

One can see that for a different choice of basis, the valuation differs by a
bounded constant.

One can replace K by any finite extension of K to obtain the definition
of overconvergent representations over L.

5.3.3 Tate-Sen’s method for A (0]

Lemma 5.50. If 0 <7 < p™" and i € Z,, then []" — 1 is a unit in Agg(,)r]
and v(O"1([e]P" — 1) = p™u(n).
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Proof. We know that m. = [¢] — 1 is a unit in A(Ig(’f] for 0 < r < 1, then

[€]P" — 1 = ¢™(n.) is a unit in Agg(,)r] for 0 < r < p~". In general,

is a unit in Ag,, hence we have the lemma. O

Lemma 5.51. Let v € I'k,, suppose x(v) =14+ up™ € Ly, with u € Zy,. Then
forO<r<p™,

(1) v(0] (’7(71'8)0_ m.) = p ().

(2) Forxz € Ag((’)r], v (y(x) — ) > 0O (2) + (p™ — 1)u(n).

Proof. We have ~(m.) — 7. = [¢]([e]*?" — 1). By Lemma 5.50, [¢]“P" — 1 is
a unit in Agg(’)r], then v (y(n.) — m.) = vO7I([e]*?" — 1) = p"w(n). This
finishes the proof of (1).

For (2), write z = Y, ap7® where v(ay) + rkv(m) — +oo as k — +oo. We
know, by the proof of Proposition 5.45, that v(®"1(z) = miny{nyv(r) + £}
where ng = min{n | v(a,) = k}. Now

j=1
=7k (y(m.) — Wa)g(:) <j _]T_ 1) (7518) - 1)] ’
therefore )= () — ) S gt <75T7Ze) _ 1)3
%
and

o7 (@) — ) 2 p"o(x) + min{(n — Do(m) + 5} = v (z) + (" — Du(m).

This finishes the proof of (2). O

Lemma 5.52. Suppose V is an over-convergent representation over L. If
{e1, -+ ,eq} is a basis of DOV over A(LO’T] and e; € p(D(V)) for every i,

_ 0,7 (1 \%=0 ; ’ 0) V=0 .
then © =Y x;e; € DYTI(V) if and only if z; € (A} for every i.

Proof. One sees that ¢(x) = 0 if and only if p(¢(z)) = 0. As e; € p(D(V)),

o(¥(e;)) = e; and p(¥(x)) = Y, ¢(¥(x;))e;. Therefore 1(x) = 0 if and only
if p(1p(x;)) = 0 for every i, or equivalently, 1 (x;) = 0 for every i. O
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Proposition 5.53. IfV is overconvergent over L, then there ezists a constant
Oy such that if v € I', n(y) = v,(log(x(7))) and r < min{p~try,p~ "M},
then y — 1 is inwvertible in DOT1(V)¥=0 and

O ((y = 1)71z) > 00 (@) — Oy — p"Du(F).

Remark 5.54. (1) Since through different choices of bases, v(®"] differs by a
bounded constant, the result of the above proposition is independent of the

choice of bases.
(2) We shall apply the result to (A(LO’ 7"])1/’:0.

Proof. First, note that if replace V by Indf(o V', we may assume that L = K.

Suppose 7 < p~lry, pick a basis {e1,--- ,eq} of DOPI(V) over A(I?(’)m],

then {p(e1),--- ,p(eq)} is a basis of DOTI(V) over Agg(’)r]. By Lemma 5.52,
p—1

every € DOTI(V)¥=0 can be written uniquely as = = 3 [e]'p(z;) with
i=1

d
z; = Y. xije; € DOPI(V). Suppose x(v) = 1+up” for u € Zy and n = n(7).
j=1

Then
(7= D = 3 () - Y[l el
i=1 =1
=Y lele (I (@) — @) = Y[l efu(an).

We claim that the map f : x +— [¢]“?" y(x) — z is invertible in D71(V) for
r < min{ry,p "} u € Z,, and n is sufficiently large. Indeed, as the action of y

is continuous, we may assume v(®"1((y — 1)e;) > 2v(n) for every j =1,--- ,d
for n sufficiently large. Then

fl@) e

[E]up" -1 - [E]U’pn 1 (7($) Z),
and
d d
V@) -2 =Y (vxs) —x)v(e;) + Yz (v(e;) — ),
Jj=1 j=1

therefore by Lemma 5.51,

1 () 2 e )

up™ _ 1

for every x € D("1(V). Thus
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00 k
gm=¢wﬂn*;O—Mﬁ_J

is the inverse of f and moreover,

(0] (g(x) - x) > v (2) + v(r).

T —1

1

By the above claim, we see that if n > 0, > min{p~'ry,p"}, then y—1

p—1
has a continuous inverse > [¢]'¢™ o £ in DO71(V)¥=0 and
i=1

VO (v = 1) (@) 2 0O (@) - pho(m) - Cy

for some constant Cy-. In general, if 47 — 1 is invertible in D71 (V)¥=0
for < min{p~lry,p "1}, we just set (y — 1)7H(z) = ¢ to (4P —
D714 -+ 9P Y (p(x)), which is an inverse of 4 — 1 in DO7(V)¥=0 for
r < min{p~try,p~"}. The proposition follows inductively. a

Theorem 5.55. The quadruple
/T: Z(O’ 1], v = U(O’ 1], Go = GKO’AHL,W, = goin(A(LO7 1])
satisfies Tate-Sen’s conditions.

Proof. We need to check the conditions (T'S1)-(TS3).
(TS1). Let L © M D K be finite extensions, for a = [71](X -, cr,, /mr, (7))L,

then for all n,
Y. Tl =1,
TEHN /Hy
and
hrf O (™ () = 0.
(TS2). First Ag, » = A(LO”;]. Suppose p"ry, > 1. We can define Ry, , by
the following commutative diagram:

Rin: AOU s o0

%wkowwﬁ—k
(0,1]
AL,n

+k

One verifies that =™ o 9* 0 ™% does not depend on the choice of k, using

the fact 1 = Id. By definition, for z € (J,~, A(L()’ilk, we immediately have:

a) Rpno Ry nim = Rpon; VS wo Lion(®) =5 (¢) B p 18 ™
RpnoRL. Rpn; (b) iz e ADY Ry, Ry, is AV,
linear; (d) HI_'I_I Rpn(x) =z
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(0,1]
L,n+k>

Rpn(x) =@ (" (y)) = o " F (" o (y)).

Furthermore, for x = ¢~ ""*(y) € A

Write y uniquely as Zfigl[a]igok(yi), then by Corollary 4.30, ¥*(y) = yo.
Thus

VO Ry (@) = 0O (00) 2 0O (7 () = 0O ).

By the above inequality, Ry, , is continuous and can be extended to A as

Ria(e) = 97" 11— p0) (65 (9)) € 7L ((AON)9=0),

thus

n—

o - e
Rj . (x) € 7" ((AD)P=0) 0 AN ===t (AP H)»=0 0 A0

_(n p (D _
= DA ).

(TS3). For an element x such that Ry ,(z) = 0, we have

+oo
) —(n+it+1)
T =Y Rp i), where Ry, (w) € o~ (0 ((aPr 0y,
=0

—(n+i+1)
Apply Proposition 5.53 on (A(l?,p +it1)]

one can define the inverse of v — 1 in (R, — 1)A as

)¥=0_ then if n is sufficiently large,

+oo
(y=1)Nz) =D @ T (y — 1) IR (@)
=0

and for z € (Rp,,, — 1)4,
v((y =) 7') > v(z) - C,
thus (TS3) is satisfied. O

Theorem 5.56 (Cherbonnier-Colmez [CC98]). All (Z,- or Q,) repre-
sentations of Gi are overconvergent.

Proof. One just needs to show the case for Zj,-representations. The Q-
representation case follows by @z, Q.

For (A,v,Go, A, ») as in the aove Theorem, Sen’s method (§3.4, in par-
ticular Proposition 3.46) implies that for any continuous cocycle o — U,
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in HY  (Go,GLg(A)), there exists an n > 0, M € GLg4(A) such that
V, € GLg(AM) for x(o) > 0 and V, is trivial in H.

IfVisa Zp—representation of Gk, pick a basis of V' over Zj, let U, be
the matrix of o € G under this basis, then o — U, is a continuous cocycle
with values in GL4(Z,). Now the fact V(D(V)) = V means that the image
of HY «(H},GLa(Zy)) — HL . (Hj,GL4(A)) is trivial, thus there exists
N € GL4(A) such that the cocycle o — W, = N71U,0(N) is trivial over
Hj. Let C = N7'M, then C~'V,0(C) = W, for 0 € Gk. As V, and W,
is trivial in H), we have C~'V,v(C) = W,,. Apply Lemma 3.45, when n is
sufficiently large, C' € GLq(AY') and thus M = NC € GLq(AY)).

Translate the above results to results about representations, there exists

an n and an A(Ig:i]—module Dgg,’rll] c A1) Q@ V such that

Av(O,l] ®A(0‘1] D&?:}J -~ Av(O,l] V.

K,n

Moreover, one concludes that Dg:i] C e ™(D(V)) and " (Dg?:rll]) cD(V)n
(AU Q V) =DO:7 "I(V). We can just take ry = p—™. 0

5.3.4 The ring BIo"],

(XX: to be fixed) One can extend v} to BOr] = g(o”’][%] by setting
0O (z) = infpsp, (v(zy) + Eyif e = ZZS’CO p¥[x1]. Moreover, for 0 < s < r,

and z € E(O”], set
0O (z) := min(v @ (z), 0O (2)). (5.15)

One sees that if z € A7) then vl*(z) = v(®7(z), however, there is no
simple formula related v[*"!(p*z) to vl*71(x).

Let B19"] be the completion of B by the Fréchet topology induced by
the family of semi-valuations v*") for 0 < s < r. Since one has vl¥1:71(z) >
pls2:7] (z) if r > 51 > so > 0, it suffices to take a sequence s, tending to 0
instead of all s € (0, r] for the definition of the topology of B I particular,
this topology is defined by a countable family of semi-valuations, which implies
that BI%"] is metrizable. Hence a sequence z,, converges in B!%"] if and only
if for whatever s € (0,7], the sequence v!*"!(z,, 1 — x,,) tends to +oo as n
tends to +o0. _ _ B _

We define Bl = (BIorlyHe  Blosrl — BIorl 4 B and BY™ = BP0 B,
Then E(LO’T] (resp. B, BEO’T]) is dense in E]LO’T] (resp. BIO-r], B]LO’T]) and its
completion by the semi-valuations vl*") for 0 < s < r is E]Loﬂ (resp. B0,

B



5.3 Overconvergent rings and overconvergent representations 163

+oo ~
Lemma 5.57. If v = pFlzk] is a unit in the ring of integers of A(07]
k=0

“+o0o e
satisfying v(zo —1) > 0, then the series logz = Y %(w —1)™ converges

n=1
in BIO-T],

Proof. Suppose a = v(®"(z — 1). The hypothesis for = implies that a > 0.
Then for every s € (0,7], v!*"l(z — 1) = @ and hence

n—1 n—1
st (D ) s olorl (CEU Y sz — 1) = na — 220
v ( p (x—1) )_ v ( ” )+nv (x—1)=na .
tends to +00 as n tends to co. This concludes the proof. a

By Proposition 5.45, since B]LO’T} is the completion of B(Lo’r] by the family

of semi-valuations v[*"1 (s € (0,7]), we have the following result.

Proposition 5.58. If 0 < r < rp, the map f — f(7L) induces an isomor-
phism from the ring of analytic functions (with coefficients in F') on the

annulus 0 < v,(T) < rv(wg) to B]LML

Lemma 5.59. Suppose ¢ = 7-tp(r.). If 1 < 1, then v(o’r](% -1 =

P
Proof. One has % — 1= p'(})xk~1. By Proposition 5.45,

k=2
0 (4 _ 1)1 (_1p) TP
v (p 1) r2r§nklgp (vp P\ + (& 1)p—l ’
and hence the result. |
; O] (2D 1Y — min(ET i
?)0rollary 5.60. (1) If i € N and r > 0, then v'\%7)( > 1) = mm(p71 P
(2) Ifie N andr > s >0, then v[s””](@ -1) = min(%,pi - 1.

(3) When i tends to +oo, @ tends to 1 on B]Igl’f] for every r > 0.

4) When i tends to +oo, -2 tends to 1 on BYX™) for every r > 0.
i (me) Ko

Proof. (1) follows from the previous lemma and the formula v(®")(¢?(z)) =
pvOP'"I(2). (2) is a consequence of (1) and the definition of v(*"]. (3) follows
from (2) and the definition of the topology on B]Igé)r]. (4) follows from (3) and
p't  _yytee  #@) 0

¢i(me) — n=i+l  p

Lemma 5.61. If i € N, then

ol i1 it _ eM—1, ifn=1i;
6(“0 (*” W'soi(e))) _{o, gnzi O

the formula
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Proof. This is clear. O

Proposition 5.62. Suppose r > 0 and n > no(L) + 1 satisfying p™r > 1. If
(x;)i>n is a sequence of elements in L%° with x; € L; for every i > n, then
there exists x € B]LO’T] such that (¢~ (z)) = z; for all i > n.
Proof. Suppose (a;);>n is a sequence of elements in N tending to +oo as i
tends to +oo such that p*x; € Of, for every ¢ > n. Suppose

o) 1) i p "
s DAL <(5(i)—1)(p—1)pi1> €O,

and suppose a

Proposition 5.63. Suppose r > 0 and n > ng(L) + 1 satisfying p"r > 1.

Then for an element in B]LO’T} the following conditions are equivalent:

(1) 0o (x)) = 0 for every i > n;
t 10,7]
(2)z € T con DV

Proof. (2) = (1) is obvious. To prove the other direction, O

Corollary 5.64. Suppose r >0 and n > no(L) + 1 satisfying p"r > 1. Then
the map x — (8(¢ " (x)))i>n induces an exact sequence
t

0= it )B]LOJ] — B — [t —o
® € i>n

Proposition 5.65. If r < 0 and p~™"r < rr, then Rr, : Zg),rl — A(LO,;:] ex-
tends by Q,-linearity and continuity to a map Ry, : E]LO’T} — B]Ig::j, the

general term Ry n,(x) tends to x in E]LO’T] and one has v (R ,(2)) >
vloml(2) — Cp(r) if s € (0,7] and x € BIO],

Proposition 5.66. If L is a finite extension of K, then H'(Hy,, BO) = 0.

Proof. Suppose o + ¢, is a continuous 1-cocycle over Hy, with values in
BO7] Suppose (s, )nen is a sequence of elements in (0, r] which tends 0 as n
tends to +o00. We construct by induction over n > —1 a sequence of elements
in B(7] satisfying the following conditions:

(i) vl
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Semi-stable p-adic representations

6.1 The rings B, and Bg

In this section, we shall define two rings of periods B;is and Bgt such that
Qp C Bcris C Bst C BdR

and they are (G, Qp)-regular.

6.1.1 The ring Bis-

Recall

W([R) ——0

)
W(R)[}] *—C

we know Kerf = (¢) where { = [w] +p = (w,1,---), w € R such that
w® = —p.

Definition 6.1. (1) The module A°._ is defined to be the divided power en-

velope of W(R) with respect to Ker 0, that is, by adding all elements ‘% for
all a € Ker6.
(2) The module Acyis is defined to be lim A2, /p"™A?

cris cris*
neN

(3) The module BL, is defined to be Acris[ ]

1
cris p

Remark 6.2. By definition, A2, is just the sub W(R)-module of W(R)[%]

generated by the w,(§) = £

n!?

n €N, ie.,

N
Alis = {z%anwn@% N < 400, an € W(R)} C W(R)) [%]. (6.1)
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It is actually a ring since

om(® wn@ = (") = (M

n m+n)! n

)wmﬁx@. (6.2)

Thus Aeris and BT are all rings.

cris

Remark 6.3. The module A%, /p"AY. is just the divided power envelop of
W, (O%/p) related to the homomorphism 6,, : W, (Ox%/p) — O /p™.

0

cris

The map A%, — Ais is injective. Thus we regard A%, as a subring of

cris

Aeris- Since A%, € W(R) [%], by continuity Ae;s C B(J{R and B}, C BIR.
We have
A0 ¢ Acri\3+.
1
W(R)[;]C B
and
—+oo
Acris = {Z anpwn(§), an, — 0 p-adically in W(R)} C Biq. (6.3)
n=0

N
B, = {Z anwn (€), a, — 0 p-adically in W(R) [Zl?]} C By (6.4)

n=0

However, one has to keep in mind that the expression of an element o € Agpis
(resp. BZ,.) in above form is not unique.

The ring homomorphism 6 : W(R) — O¢ can be extended to A%, and
thus to Ags:

W (R)

Acris

Proposition 6.4. The kernel
Ker (0 : Acis — O¢)

is a divided power ideal, which means that, if a € Aeis such that 6(a) = 0,
then for allm € N,m > 1, %(6 B, ) is again in Aqis and 0(%) =0.

cris
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Proof. If a =" apwn (&) € AV, then

cris?

am Ny
= Y Hespoe
m) n' |

sum of i,=m n

We claim that for ((TLT,L;) 7 € Nforn>1andie€ N. This fact is trivially true
for i = 0. If nt > 0, (7?)1) -+ can be interpreted combinatorially as the number

of choices to put ni balls into i unlabeled boxes. Thus

a™ mn 0
W = Z H Tl' zn ; )[ " Wniy, <£) € ACI‘lb

sum of i,=m n

and (% ) 0.
The case for a € Ay follows by continuity. a

We then have a ring homomorphism
0_ : Acris i’ OC - OC/p = O?/p
Proposition 6.5. The kernel Ker (§) = (Ker6,p) is again a divided power

ideal, which means that, if a € Ker (), then for allm € N, m > 1, ’j,—j: € Acris
and é(“—wi) =0.

in Zy. O

Proof. This is an easy exercise, noting that p divides £

Recall that
©0 1 n
t= E (—1)"+17(H ) € BdR.

n
n=1

Proposition 6.6. One has t € Acris and P71 € pAeyis.

Proof. Since [e] —1=0b, b€ W(R), w = (n—-1b"w, (&) and (n—1)! —
0 p-adically, hence t € Agyis.
To show tP~! € pAers, we just need to show that ([e] — 1)P71 € pA.ys.
Note that [¢] — 1= (¢ — 1,%,---), and
(e—1)™ = lim (Gnim — 1)P

m

m—-+oo
where (pn = ™ is a primitive n-th root of unity. Then v((e — 1)) =
e and

(e—1)P" = (p",1,--+) X unit = @ - unit.
Then

([e] =P~ = [@P] - (¥) = (€ = p)P - () = &7 - (¥) mod pAcris,
but &2 = p(p — 1)lwp(§) € pAcris, we hence have the result. |
Definition 6.7. We define Beis := B, [1/t] = Acxis[1/t], then Beys C Bar.
Remark 6.8. The rings A, B

is» Beris are all stable under the action of Gk .
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6.1.2 The Frobenius map ¢ on Bgyis.

Recall on W(R), we have a Frobenius map

@((GOaala"' 7an7...)):(a8,a}1”... 7a$”...)_

For all b € W(R), p(b) = b” mod p, thus

(&) =& +pn=pn+ (p— 1)wy(§)), n € W(R),

and p(&™) =p™(n+ (p — 1)lwp(§))™. Therefore we can define

Pm(©) = 21+ (0= Dlwp()™ € W(R)wp(€)] C Al

m
m!
AS a consequence,

0
(A

cris

) c AY

cris®
By continuity, ¢ is extended to Aeis and B, . Then

p(t) = log([e"]) = log([e]") = plog([e]) = pt,

hence ¢(t) = pt. Consequently ¢ is extended to Bg,is by setting go(%) = ﬁ
The action of ¢ commutes with the action of Gi: for any g € G, b € Beyis,

¢(gb) = g(b).

6.1.3 The logarithm map.
We first recall the construction of the classical p-adic logarithm
log, : C* — C.
Using the key fact
log(zy) = logz + logy,
the construction is processed in four steps:
- For those z satisfying v(x — 1) > 1, set
logz := i(—l)”“w. (6.5)

n
n=0

- In general, for any x € 1+ m¢g = {z € C | v(z — 1) > 0}, there exists
m € N such that v(2?" — 1) > 1, then set

1 m
logz := o log(z? ). (6.6)
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- For any a € OF, then @ € k and a # 0. One has a decomposition
a = [alz,
where a € k*, [a] € W(k) and z € 1 + mg. We let
loga :=logz. (6.7)
- Moreover, for any z € C with v(z) = %, r,s € Z, s > 1, we see that
v(z®) =r=wv(p") and z—i =y € OF. By the relation
s

log(z—r) =logy = slogz — rlogp,

to define logz, it suffices to define logp. In particular, if let log,p = 0,
then

1 1
log, = := B log,y = 3 log y. (6.8)

We now define the logarithm map in (Fr R)* with values in Bqr. Similar
to the classical case, one needs the key rule:

log[zy] = log[z] + log]y].
Recall that
Up=1+mp={z€R|v(x-1)>0},
U DU ={z€R|v(x—1)>1},

For any = € U}, there exists m € N, m > 1, such that z*” € U}. Choose
x € U}, then the Teichmiiller representative of z is [z] = (2,0,---) € W(R).
(1) We first define the logarithm map on U}, by

oo

log[z] := Z(—l)’”lw, r € Ugp. (6.9)
n=0

This series converges in A, since

O([x] —1) = 2© —1,
which means that # € U} or equivalently, 6([z] — 1) = 0. Therefore w,,([z] —
1) = EEDT e 4 and

o

logla] = ) (=1)""}(n — 1)lwu(a] — 1)

n=0

converges since (n — 1)! — 0 when n — oo.
(2) The logarithm map on U}
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log: Up — Awis, «+ log[x]

extends uniquely to the logarithm map on UIJ{ with values in BT, by

cris

log : UE — BT

cris?

log[x] := pim log[zP"] (m > 0). (6.10)

By definition, for every z € U}, one can check

¢(log[z]) = plog[z].

Furthermore, if denote by U the image of log : U;-g — BT, then we have the

cris?
following diagram with exact rows:

0 —Qy(1) Ug C 0
0 — Fil' Bag Bix C 0

where the first row exact sequence comes from Proposition 4.15, the isomor-
phism U ~ U follows from the fact that for z = (z(™) e Uz, log 0 =0eC
if and only if (9 € pye (K). As a result,

U NFil' Bgr = Q,t = Q,(1), U + Fil' Byr = Bl (6.11)
and pu = pu for all u € U.
Remark 6.9. We shall see later in Theorem 6.26 that U = {u € B, | pu =
pul.
(3) For a € R*, we define
log[a] := log]x] (6.12)

by using the decomposition R* = k* x Ug, a = apx for ag € k*, x € Ug.
(4) Finally, we can extend the logarithm map to

log: (FrR)* — Blz, x+ log[x].

Recall the element @w € R is given by @w(® = —p,v(w) = 1. For any = €

(Fr R)* with v(z) = £, r,s € Z, s > 1, then % =y € R*. Hence the relation

log(;%) =logy = slogz — rlog w,

implies that
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L (rlog[] + logly]).

S

log[z] =

Thus in order to define log[z], it suffices to define log[w].
For [w] € W(R) C W(R)[1] 2. €, consider =, note that

P P’
o(E) =221
-p -p
then -
[w]) S ¢ R AR W LA
log (=2 ) =Y (—y)+t—=2— - _SY"=>_¢cB
o (= S > o < Bl
is well defined. Set
[=] n
[w]) = +1(—7p*1) +
loglw| :=log | — | = -t ————— € B, 6.13
el = log () = 0T e, 613

then we get the desired logarithm map log : (FrR)* — B(J{R for any = €
(Fr R)*. Note that

- For every g € G, gw = weX9) | then
log([gw]) = log[w] + x(9)t,

as log[e] = t. B
- The kernel of log is just k*. The short exact sequence

0—Uz# —(FrR)* /k*—Q—0
shows that the sub-Q,-vector space of B:{R generated by the image of the
logarithm map log is U & Q) log[w].
6.1.4 The ring Bq;.

Definition 6.10. The ring By := Beis[log[w]] is defined to be the sub Beyis-
algebra of Bar generated by log[w].

Clearly By is stable under the action of Gk (even of Gk,). Moreover,
denote by C..is and Cg; the fraction fields of Bs and Bg; respectively, then
both Cgis and Cg are stable under the actions of Gx and Gg,, and the
Frobenius map ¢ on Bgs extends to Ceyis.

Proposition 6.11. log[w] is transcendental over Ceys.

We need a lemma:

Lemma 6.12. The element log[w] is not contained in Ceyis.
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Proof. Let 3 = £/p, then ¢ and 3 are both inside Fil' Bgg but not Fil® Byg.
Let S = W(R)[[B]] C Bj be the subring of power series > a,, 3" with coeffi-
cients a, € W(R). For every n € N, let Fil' § = S N Fil’ Byg, then Fil' S is a
principal ideal of S generated by 3°. We denote

0" : Fil' Bgr — O¢

the map sending f'a to #(a). One knows that 6 (Fil* S) = O¢.

By construction, Agis C S and hence Cepys = Frac Aeys C Frac(S). We
show that if & € S is not zero, then alog[w] ¢ S, which is sufficient for the
lemma.

Since S is separated by the p-adic topology, it suffices to show that if
r € Nand a € S —pS, then p"aloglw] ¢ S. If a € W(R) satisfies 0(a) € pO¢,
then a € (p,§)W(R) and hence a € pS. Therefore one can find ¢ > 0 and
b, € W(R) such that 6(b;) ¢ O¢ and

a=p( > baf")+ Y bap".

0<n<i n>i
————
A B
Note that log[ew] = — 3" 3" /n. Suppose j > r is an integer such that p/ > i. If
p"aloglw] € S, one has a- Y p’ 713" /n € S. Note that - > p/~!'"/n €
n>0 0<n<pi

S, then
AN P e FIP Bag, By p 8" /n € Rl Buy
n>pJ n>pi

and » o
B [p- Y bufB" € FilPF Byg,

n>iu
thus

b3 Jp € Fil''? Byg N (S + Fil''" ! Byr) = Fil'™ § + Fil"™’ ! By.
Now on one hand, 67+ (b; 37’ /p) = 6(b;)/p ¢ Oc; on the other hand,
oIt (Rl S + Fil""” 1 Byg) = Oc,
we have a contradiction. O
Proof (Proof of Proposition 6.11). If log[cw] is not transcendental, suppose
o+ X+ +cg_1 X414+ X% is the minimal polynomial of log[e] in Coyis.

For g € Gk,, we have g([w]/p) = ([]/p) - [€]¥(9) where x is the cyclotomic
character, thus

glog[w] = log[w] + x(g)t.
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Since Cuis is stable by Gk, and for every g € Gg,,

g(co) + -+ + glca—1)(logw] + x(9)t)* " + (log[w] + x(g)t)* = 0.

By the uniqueness of minimal polynomial, for every g € Gg,, g(ca—1) +
d-x(g)t = cq—1. If let ¢ = cq—1 + dlog[w], one has g(c) = ¢, then ¢ €
(Bqr)%%0 = Ky C Beys and thus logw] = d7'(c — cq_1) € Cuis, which
contradicts Lemma 6.12. ad

As an immediate consequence of Proposition 6.11, we have

Theorem 6.13. The homomorphism of Beis-algebras

Bcris[x} — Bst
x> log[w]

s an isomorphism.
Theorem 6.14. (1) (Cy)%% = Ky, thus
(B

cris

)GK = (Bcris)GK - (Bst)GK - K(]~
(2) The map

K ®F, Bst — Bar
ARb—  \b.

18 1njective.

Proof. Note that Frac(K @k, Beyis) is a finite extension over Ceyis, thus log[w]
is transcendental over Frac(K ®g, Beris). Therefore

K ®K0 Bst - K ®K0 Bcris[IOg[wH = (K ®K0 Bcris)“Og[wH

and (2) is proved.
For (1), we know that

1.6k 1
W(R) [~ = Ky = W[~],
V) = o = W)
and
1 +
W(R)[i] C Bcris’
p
then
Ky C (B;iS)GK - (BcriS)GK C (Bst)GK C (Cst)GK C (BdR)GK =K.

Thus (1) follows from (2). O
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6.1.5 The operators ¢ and N on Bg;.

We extend ¢ to an endomorphism of By by requiring
¢(log[w]) = plog|w].

Then ¢ commutes with the action of Gg.

Definition 6.15. The monodromy operator

N : By — B
> bu(log[w])™ — — 3 nb,(loglw])* "
neN neN

is the unique Beyis-derivation such that N(log[w]) = —1.

As a consequence of Theorem 6.13, we have

Proposition 6.16. The sequence

0 — BCI‘iS*)BSt L Bst — O (614)
18 exact.

Proposition 6.17. The monodromy operator N satisfies:
(1) gN = Ny for every g € Gk,;
(2) No = peN.

Proof. Using g(log[w]) = log[w]|+x(g)t, and N(x(g)t) = 0 since x(g)t € Beris,
we get that
N(gb) = g(Nb), for all b € Bg,g € Gk,.

Since
No(> by (logl@])™) =N (D @(bn)p" (log[=])™)
neN neN
=Y np(bn)p" (logla])"
neN
—ppN (S b (logl])™),
neN
we have Ny = ppN. a

6.2 Some properties about B.,;s.

6.2.1 Some ideals of W(R).

For every subring A of BdR (in particular, A = W(R), W(R)[]%], Wk(R) =
W(R)[ | ®ky K, Acris, B Byis), and for every r € Z, we let Fil" A = AN

CI‘IS7
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Fil” Bygr. In particular, one has Fil” A = AN BJ, and denotes 0 : Fil” A — C
the restriction of the projection B;R — C.

If A is a subring of Beys stable by ¢, and if 7 € Z, we let II"A = {a € A |
¢"(A) € Fil" A for n € N}. If IP'A = A, i.e., A C Bf; (which is the case for
A =W(R), W(R)[%], Agis or B ), then {I"A : r € N} forms a decreasing

cris
sequence of ideals of A. In this case we also write 1A = T A.
For any x € W(R), we write 2’ = ¢ !(x), we also denote Z € R the
reduction of x modulo p. Then for 7. = [¢] — 1, one has 7. = [¢/] — 1. Write

7. = wl-7 where 7 = 14 [¢/] +- - -+[¢]P~". Note that 0(7) = > (eM) =0
0<i<p—1
and 1
f:1+5’+...+€/17*1:67
e -1
and v(7) = ;25 — p%l =1, therefore 7 is a generator of Ker 6.

Proposition 6.18. For every r € N,

(1) The ideal IMW (R) is the principal ideal generated by 77 . In particular,
IFW (R) is the r-th power of IW (R).

(2) For every element a € IMW(R), a generates the ideal if and only if

v(a) = ;5.

We first show the case r = 1, which is the following lemma:

Lemma 6.19. (1) The ideal IW (R) is principal, generated by me.

(2) For every element a = (ag,a1,--+) € IW(R), a generates the ideal if

and only if v(ag) = p’%l and one has v(a,) = ﬁ for every n € N.

Proof. For a = (ag, -+ ,an, - -) € IW(R), let a,, = a&”), then for every
m €N,

0(ma) =Y p"al” =af 4+ +pTak 4"l 4 =0,

We claim that for any pair (r,m) € N x N, one has v(a,,) > p~™(1 +p~! +
-+ p~"). This can be shown by induction to the pair (r,m) ordered by the
lexicographic order:

(a) If r=m =0, 6(a) = ap (mod p), thus v(ag) > 1;

(b) If r = 0, but m # 0, one has

m—1

0=0(p"a) =Y _ p'al” +pmab, (mod p™*™);

n=0

by induction hypothesis, for 0 < n < m — 1, v(a,) > p~ ", thus v(p"a?”) >
n+p™ " >m+ 1, and v(p™ak, ) < m + 1, therefore v(ay,) > p™;
(c) If r # 0, one has

m—1 e’}
0="06(p"a) =Y pah +pTak Y ptah;
n=0 n=m-+1

by induction hypothesis,



176 6 Semi-stable p-adic representations
- for0<n<m—1,v(a,) >p (1 +pt+---p7"), thus
v(p"al ) =4 p" (14T Zm (L pT);
- forn>m+1,v(a,) >p (1 +---p~ "), thus
vl )z p" T A+ p T Em (L4 p T

one thus has v(ay,) >p ™1+ +p".

Now by the claim, if a € IW(R) v(an) = p" - Py, thus v(an) > o5
On the other hand, for any n € N, 8(¢"r.) = 0([¢]"" — 1) = 0, thus
me € IW(R). Asv(e—1) = 2, the above claim implies that IW( ) C (e, p).

But the set (O¢)Y is p-torsion free, thus if px € IW(R), then x € W(R). Hence
IW(R) = (m.) and we have the lemma. O

Proof (Proof of the Proposition). Let gr' W(R) = Fil' W(R)/Fil""* W (R)
and let 6% be the projection from Fil' W (R) to gr! W(R). As Fil' W(R) is
the principal ideal generated by 7¢, gr' W(R) is a free Oc-module of rank 1
generated by (%) = 6'(7)". Note that m. = 7.7, then

" () = wlrttet e for every n e N.

For i > 1, 0(¢' (7)) = p, hence 0 (o™ (n.)) = p™ (e — 1) - 01 (7).

Proof of (1): The inclusion 7. W (R) C I[T] is clear. We show 77 W (R) D II"]
by induction. The case r = 0 is trivial. Suppose r > 1. If a € I(’")VV(R)7 by
induction hypothesis, we can write a = 77~!b with b € W (R). We know that
0"=1(p"(a)) = 0 for every n € N. But

0" (" (@) = 0" (1))-(0' (9" ()~ = (p" (W =1)"0(" (b))0" (1)

Since 6'(7)"~! is a generator of gr" ' W(R) and since p™(¢(*) — 1) # 0, one
must have 6(¢" (b)) = 0 for every n € N, hence b € IW(R). By the precedent
lemma, there exists ¢ € W(R) such that b = m.c. Thus a € 7ZW(R).
Proof of (2): It follows immediately from that v(#T) = rv(e — 1) =
and that x € W(R) is a unit if and only if Z is a unit in R, i.e. if v(Z) =0. O

6.2.2 A description of Acys.

For every n € N, we write n = r(n) + (p — 1)¢(n) with r(n),q(n) € N and
0<r(n)<p-1.Let

T = 700 (77 ) = () g(m))

Note that if p = 2, t{"} = ¢"/(2"n!). We have shown that t*~1/p € A,
therefore t1™ € A.s. Let A be a subring of K;[[t]] formed by elements of

the form 3 a,t{™ with a,, € W = W(k) converging p-adically to 0. Let
neN
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Se. = W|[[r.]] be the ring of power series of 7. with coefficients in . One can
identify S, as a sub-W-algebra of A, since

ﬂszet—lzzg:cht{”},

n>1" n>1

where c,, = p?(™q(n)!/n!, by a simple calculation, ¢, tends to 0 as n tends to
infinity.

Both S, and A, are subrings of A.s, stable by the actions of ¢ and of
Gk, which factors through I', = Gal(K;¥“/Ky). We see that

n
7(-6

= Te * U,

t=log(le) =7 - 3 (~1)"

"o n+1

where u is a unit in A..

Recall Ak, is the torsion subgroup of I'k,. Then the subfield of Ko((t))
fixed by Ag, is Ko((t*~1)) (resp. K((t?)) if p = 2). As a result, the ring A,
the subring of A, fixed by A, , is formed by 3 a,t{"} with a,, = 0ifp—11{n
(resp. if 2t n).

Let g be the trace from Ko((t)) to Ko((tP~1)) (resp. Ko((t?))if p=2)

of 7., then
t" t"
m=(p—1) Z ] (resp. QZ ﬁ)

n>1 n>1

p—1ln 2|n
One sees that the ring S, the subring of S, fixed by Ag,, is then the ring of
power series W[[mg]]. One can easily check that my € pA (resp. 84), and there
exists v € A such that mo/p = v - (t*71/p) (resp. m/8 = v - (t?/8)). One can
also see the evident identification S, ®g A = A..

let ¢ = p+mo and let ¢’ = ¢~*(q). Then ¢ = > e, €] (9] (vesp. [e] +[¢] 1)

where [a] is the Teichmiiller representative of a.

Proposition 6.20. With the precedent notations,

(1) the element mq is a generator of P~ W (R) if p # 2 (resp. of VW (R)
ifp=2).

(2) there exists a unit u € S such that

oo = umoq” " if p # 2 (resp. umoq® if p = 2).

Proof. The case of p # 2 and p = 2 are analogous, we just show the case

p#2
Proof of (1): Let 7 be the norm of 7. over the field extension Ko((t))/Ko((t?~1)).

One has
m= [I ner) =TI -0,
heAk, a€lFy
By Proposition 6.18, since [¢](® — 1 is a generator of IW (R), 7, is a generator

of IP=UW(R), one has v(m) = (p — 1)1)%1 = p = v(7g). Therefore one has
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Wl[mo]] = W][m1]]. We can write mg = > apmn}* with a,, € W and a4 is a
unit. Moreover, since ag = () = ag, mo generates the same ideal as 7.
Proof of (2): Note that ¢’ and 7 are two generators of the kernel of the
restriction of 0 to S. = ¢~1(S.) = W[[r.]], thus
— b
e = QT = ToT = UjT.q
with «} a unit in S’. Then @m. = uymeq and @(72~1) = u? " 7P~1¢P=1. Since
mo and 7P~ 1 are two generators of S. N IP~UW (R), p(mp) = umoq?~" with u

Ko

a unit in S.. Now the uniqueness of u and the fact that S = SEA imply that
wand u~l € 8. a

If Ag is a commutative ring, A; and Ay are two Ag algebras such that A;
and A, are separated and complete by the p-adic topology, we let A1®4,A2
be the separate completion of A4; ® 4, A2 by the p-adic topology.

Theorem 6.21. One has an isomorphism of W(R)-algebras
a: W(R)DsA — Acis
which is continuous by p-adic topology, given by
A} am @y () =D amym (2).
p p
The isomorphism o thus induces an isomorphism
a.: W(R)®s, A — Aeris-
Proof. The isomorphism . comes from
W(R)®s, A = W (R)®s.5. ®s A = W(R)®sA

and the isomorphism «. We only consider the case p # 2 (p = 2 is analogous).
Certainly the homomorphism « is well defined and continuous as % €

Fil' A5, we are left to show that « is an isomorphism. Since both the source
and the target are rings separated and complete by p-adic topology without
p-torsion, it suffices to show that « induces an isomorphism on reduction
modulo p.

But A modulo p is the divided power envelope of R relative to an ideal
generated by ¢/, thus it is the free module over R/q’P with base the images
of Ypm(q') or 'ym(%). By the previous proposition, ¢(my) = umeqP~!, thus
mo = u/'mhg P~ =/ (¢’” — pg’P~ "), which implies that R/q’? = R/75 and Aeis
modulo p is the free module over R/7o with base the images of v (52). It is
clear this is also the case for the ring W(R)®gA modulo p. O
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6.2.3 The filtration by Il"].

Proposition 6.22. For every r € N, suppose 1"} = I A 4. Then if r > 1,
I s o divided power ideal of Acris which is the associated sub-W (R)-module
(and also an ideal) of Ais generated by t15} for s > r.

Proof. Suppose I(r) is the sub-W (R)-module generated by {5} for s > r. It
is clear that I(r) C I") and I(r) is a divided power ideal.

It remains to show that I'"l C I(r). We show this by induction on r. The
case r = 0 is trivial.

Suppose 7 > 1 and a € II"!. The induction hypothesis allows us to write a

as the form
a= Z astts

s>r—1

where a, € W(R) tends p-adically to 0. If b = a,_1, we have a = bt{"—1} +a
where a’ € I(r) C II") thus bt{"=1} € II"]. But

Pty = prm o () T =y - " (0) £

where ¢, ,, is a nonzero rational number. Since tr=1 e Fil" ! — Fil", one has
b € I N W (R), which is the principal ideal generated by 7.. Thus bt{"—1}
belongs to an ideal of A..s generated by 7t But in Aers, t and 7.
generate the same ideal as t = 7. x (unit), hence bt{"~1} belongs to an ideal
generated by t - t1"=1} | which is contained in I(r). 0

For every r € N, we let

Al = A/IV WT(R) = W(R)/IVW(R).

Proposition 6.23. For every r € N, A
The natural map

and W7 (R) are of no p-torsion.
L wr (R) - Agris

are injective and its cokernel is p-torsion, annihilated by p™m! where m is the
largest integer such that (p — 1)m < r.

Proof. For every r € N, Aeyis/ Fil” Aeyis is torsion free. The kernel of the map
Acris — (Aeris/ Fil” Ams)N x +— (p"zmod Fil"),en
is nothing by I, thus
Alis = (Aais/ Fil” Acis)™

Cris
is torsion free. As (" is injective by definition, W”(R) is also torsion free.
As W(R)-module, A" is generated by the images of vs(p~!mg) for 0 <
(p—1)s < r, since p®slys(p~1my) € W(R), and v(p®s!) is increasing, we have
the proposition. O



180 6 Semi-stable p-adic representations

For every subring A of A and for n € N, write
Fil" A = ANFil" A, Fﬂ; A={z eFil" A | px € p"A}.

Proposition 6.24. For every r € N,
(1) the sequence

0— Zpt{r} — Fﬂ; Acris p el Acris —0

1s exact.
(2) the ideal Fil;, Acis is the associated sub-W (R)-module of Acris generated

by ¢7yn(p~PY), for j+(p—1)n >
(8) for m the largest integer such that (¢—1)m < r, for every x € Fil" Acys,
p"mlz € Filj Acys.

Proof. Write v = p~"¢ — 1. It is clear that Zpt{"} C Kerv. Conversely, if
z € Kerv, then z € I and can be written as

x = Z astt}, a, € W(R) tends to 0 p-adically.
s>r
Note that for every n € N, (p~"¢)"(z) = ¢"(a,)tV"} (mod p™Aess), thus
z = btI"} with b € W(R) and moreover, ¢(b) = b, i.e. b € Z,.
Let N be the associated sub-W (R)-module of A.,;s generated by q’j'yn(tp;1 ),
for j+ (p—1)n>r. If j,n € N, one has

P70V igpo=Dy () a1 (g 4 0y
p))—qp %(p)—p (1+p)7n(p
thus NV C Fil; Agris.

Since Zpt{”} C N, to prove the first two assertions, it suffices to show
that for every a € Acys, there exists © € N such that v(z) = a. Since N and
Ais are separated and complete by the p-adic topology, it suffices to show
that for every a € Acis, there exists € N, such that v(z) = a (mod p). If
a=3 /1 anvn(%) with a,, € W(R), it is nothing but to take x = —a.

Thus it remains to check that for every ¢ € N such that (p — 1)i < r and
for b € W(R), there exists € N such that v(z) — bfyi(%) is contained in
the ideal M generated by p and ~,(p~'tP~1) with n > 4. It suffices to take

T = yq””—(P—l)ifyi(tp:) with y € W(R) the solution of the equation

tp—1

(g7 v )

oy — "Vl = b,

Proof of (3): Suppose = € Fil" As, then by Proposition 6.23, one can
write
prmlz =y+z, ye W(R), ze Il
Since y € Il one sees that y € Fil” W (R) = ¢"W(R) C N. The assertion
follows since we also have z € II" C N. O
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Theorem 6.25. (1) Suppose

! e = {2 € Beis | 9" (2) € Fil° By for all n € N},

cris

Then QO(B(/:ris) g B:;is g B(/:ris pr # 2 and sz(B::ris) g Bctis g Béris pr =2.
(2) For every r € N, the sequence
0— QP(T) - Fllr B;is vl B;is —0

18 exact.
(8) For every r € Z, the sequence

00— Qp(”n) — Fllr Bcris Iﬁ—ﬂﬂ—l) Bcris — 0
18 exact.

Proof. For (1), B, C B!, is trivial. Conversely, suppose © € B,;,. There
exist r,j € N and y € Aus such that © = t7"p7y. If n € N, @™(x) =
P~ It " (), then " (y) € Fil” Ags for all n, and thus y € I, One can

write y = 3 aptt™t with a,, € W(R) converging to 0 p-adically. One

m>0
thus has
2=p7 Y amt" T and o =p I Y " p(an)pm T
m>0 m>0

By a simple calculation, px = p~7=" Y c¢no(am,)t™, where ¢, is a rational
m>0
number satisfying

1 1
v(em) = (m+r)(1 - 1 W)-

If p # 2, it is an integer and p(z) € p™/ "W (R)[[t]] € p~7 " Aenis € B,,. For
p = 2, the proof is analogous.

The assertion (2) follows directly from Proposition 6.24.

For the proof of (3), by (2), for every integer i such that r 44 > 0, one has
an exact sequence

0 — Qu(r+1i) — FiI"** Bf. . — BT

cris cris — 07
which, Tensoring by Q,(—1%), results the following exact sequence
0 — Qu(r) — t*Fil'™" BY. — ¢t7'B}

. .. — 0.
Cris Cris

The result follows by passing the above exact sequence to the limit. O
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Let
B, = B¥-" = {b € Beys, b = b},

cris

which is a sub-ring of B.,s containing Q,. Recall U is the image of U; under
the logarithm map. Then U(—1) = { | u € U}. Since ¢(v) = v forv € U(-1),
U(1) c Fil™' B,.

Theorem 6.26. (1) Fil° B, = Q,, and for every i > 0, Fil' B, = 0.

(2) One has U(—1) = Fil"!' B,.

(8) Suppose v is an element of U(—1) not contained in Q,, then for any
integer r > 1,

Fil "B, ={b="0bg +bv+---4b._10" " |bg,---b._1 € U(—1)}

and thus B is the Qy-algebra generated by U(—1).
(4) For r > 0, the sequence

0 — Q,—Fil™" B, — Fil™" Bqr/Bjz — 0 (6.15)

18 exact.
(5) The sequence

0 — Q, — B, — Bar/Biz — 0 (6.16)
1s exact.

Proof. Filo B, = Q, is a special case of Theorem 6.25 (3). Thus Fil' B, C
Q, NFil' Bqg = 0 for ¢ > 0. (1) is proved.
By (1), one also see for r > 0, the sequence
0 — Q,— Fil™" B, — Fil™" Bqr/Bjx
is exact. Along with the exact sequence

0—Q,(1) —U—C—0,

we have a commutative diagram

0 Qp u-1) —— c(-1) — 0
Idl incll Idl
0 Q, Fil™' B, —— Fil™' Byr/B;

whose rows are exact. We thus get (2) and the case r =1 of (4).

Suppose r > 2 and let X, be the set of elements of the form Z:;Ol b;vt
with b; € U(=1). It is a sub Q,-vector space of Fil™" B.. Write v =
vo/t and b; = bl/t, then vo,b; € U and 6(vg) # 0. Thus b,_1v"~! =
b._qvp /T and O(b._ vy ) = 0(b._1)0(ve)" L. Thus the projection of X, to
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Fil™" Bar/ Fil7""! Byp = C(—r) is surjective. By induction, the projection
of X, to FiI™" Bqr/ BIR is also surjective. We have a commutative diagram

0 Qp X, —— Fil""Bgr/Bjz —— 0
Idl incll Idl
0 Q, Fil™' B, —— Fil™" Bar/Bx

whose rows are exact. We thus get (3) and the rest of (4).
(5) follows by passage to the limit. a

Remark 6.27. (1) The exact sequence (6.16) is the so-called fundamental exzact
sequence, which means that

(@) Qp = B N B,

(b) Bar = B. + Bj; (not a direct sum).
One can also use Theorem 6.25 (3) directly to deduce the exact sequence

0— Be_)Bcris @—_1) Bcris —0

and prove (5).

(2) For any integer r > 1, Fil® Bgri':l = Qpr, the unique unramified exten-
sion of @, of degree r. This could be shown by using analogue method as the
one to prove Proposition 6.24 (1).

6.3 Semi-stable p-adic Galois representations

Proposition 6.28. The rings Be.is and B are (Q,, G )-regular, which means
that

(1) Beis and By are domains,

(2) BGE = Bg* = CG* = Ko,

(8) If b € Beyis (resp. Bgt), b # 0, such that Q,-b is stable under G, then
b is invertible in Bes (Tesp. Bst).

Proof. (1) is immediate, since Bens C Bsy C Bagr- (2) is just Theorem 6.14

(1). ) )
For (3), since k is the residue field of R, W (R) contains W (k) and W(R)[%}
contains P := W(l?:)[z%] Then Be,is contains Py. Let P be the algebraic closure
of Py in C, then Bgg is a P-algebra.

If b € Bar, b # 0, such that Qb is stable under G, by multiplying ¢ ~* for
some i € Z, we may assume b € BJ, but b ¢ Ifil1 Bgr. Suppose g(b) = n(g)b.
Let b = 6(b) be the image of b € C'. Then Q,b = Q,(n) is a one-dimensional
Qp-subspace of C' stable under G, by Sen’s theory (Corollary 3.57), this
implies that n(I) is finite and b € P C BJy. Then ¥’ = b —b € Fil' Bqg —
Fil'™! Bgg for some i > 1. Note that Q' is also stable by G whose action is
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defined by the same 7. Then the G k-action on Q,0(t~ ') is defined by x~'n
where  is the cyclotomic character. In this case x~'n(Ix) is not finite and it
is only possible that ¥ = 0 and hence b =b € P.

Now if b € By, then b € PN By. We claim that P N By, = Py C Beyis.
Indeed, suppose P N By = @ D Py. Then Frac(Q) contains a nontrivial
finite extension L of Py. Note that Ly = Py and by (2), BgL = Py, but
Frac(Q)%* = L, contradiction! O

For any p-adic representation V', we denote
Dy (V) = (Bs ®g, V), Deis(V) = (Baris ©g, V)¥.
Note that D (V) and D,s(V') are Kp-vector spaces and the maps
ast(v) : Bst ®K0 D%t(v) - Bst ®Qp V
Oécris(‘/) : Bcris ®K0 Dcris(V) - Bcris ®Qp V
are always injective.

Definition 6.29. A p-adic representation V' of Gk is called semi-stable if it
is Bg-admissible, i.e., the map as (V) is an isomorphism.

A p-adic representation V of Gg is called crystalline if it is Beps-
admissible, i.e., the map aeis(V) s an isomorphism.

Clearly, for any p-adic representation V', Deis(V) is a subspace of Dy (V)
and
dim g, Deis (V) < dim, Dy (V) < dimg, V-

Therefore we have

Proposition 6.30. (1) A p-adic representation V is semi-stable (resp. crys-
talline) if and only if dimg, Ds (V) = dimg, V' (resp. dimg, Deis(V) =
dime V)

(2) A crystalline representation is always semi-stable.

Let V be any p-adic representation of G, since K ®g, Bst — Bar is
injective if [K : Ky] < oo (Theorem 6.14), we see that

K ®r, Dyt(V) = K ®k, (Bst ®q, V)GK
= (K @k, (B ®q, V)"
= (K ®K, Bs) ®q, V)"
< (Bar ®g, V)% = Dgr(V).

Thus K ®, Dst(V) C Dar(V) as K-vector spaces.
Assume that V' is semi-stable, then dimg, Deris(V) = dimg, V, thus

dimg K KK, Dcris(v) = dime V > dimDgRrYV,

which implies that
dim DdRV = dime M

i.e., V is de Rham. Thus we have proved that
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Proposition 6.31. If V is a semi-stable p-adic representation of G, then it
is de Rham. Moreover,

Dir(V) = K @k, Dst (V).

Let V be any p-adic representation of Gx. On D (V) there are a lot of
structures because of the maps ¢ and N on By We define two corresponding
maps ¢ and N on By ®q, V' by

P(b©v) = pb o
Nb®v)=Nb®u

for b € Bg, v € V. The maps ¢ and N commute with the action of G
and satisfy Ny = ppN. Now one can easily see that the Ky-vector space
D = D4 (V) is stable under ¢ and N, dimg, D < oo and ¢ is bijective on D
(One can check that ¢ is injective on Bg;). Moreover, the K-vector space

D = K @, Dot(V) C Dar(V)

is equipped with the structure of a filtered K-vector space with the induced
filtration , ,
Fil' Dgc = Dy (| Fil' Dagr (V).
In next section, we shall see Dg (V) is a filtered (v, N)-module D over K
such that dimg, D < oo and ¢ is bijective on D.

Remark 6.32. By definition, a crystalline representation is a p-adic represen-
tation of Gk which is Bys-admissible. Note that Beis = {b € By | Nb = 0}.
Thus a p-adic representation V of Gk is crystalline if and only if V' is semi-
stable and N = 0 on Dg (V).

6.4 Filtered (¢, N)-modules

6.4.1 Definitions.

Definition 6.33. A (p, N)-module over k (or equivalently, over Ky) is a Ko-
vector space D equipped with two maps

o, N:D— D

with the following properties:
(1) ¢ is semi-linear with respect to the absolute Frobenius o on Ky.
(2) N is a Ko-linear map.
(3) No = peN.

A morphism n : Dy — Ds between two (¢, N)-modules, is a Ky-linear map
commuting with ¢ and N.
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Remark 6.34. The map ¢ : D — D is additive, and
o(Ad) = o(N)p(d), for every A € Ky, d € D.
To give ¢ is equivalent to giving a Ky-linear map
P:Ky,®x, D — D,
by 2(A ® d) = Ap(d).

Remark 6.35. The category of (¢, N)-modules is an abelian category. It is the
category of left-modules over the non-commutative ring generated by Ky and
two elements ¢ and N with relations

eA=0(N)p, NA=AN, forall A e K
and
Ny = peN.

Moreover,

(1) There is a tensor product in this category given by

e D;®Dy=D; ®g, D2 as Kp-vector space,
o p(dy ®dy) = pdy ® pda,
[ ] N(d1®d2):Nd1®d2+d1®Nd2

(2) Ko has a structure of (¢, N)-module by ¢ = ¢ and N = 0. Moreover
Ko®D=D®Ky=D,

thus it is the unit object in the category.
(3) The full sub-category of the category of (¢, N)-modules over k such
that

dimg, D < oo and ¢ is bijective

is an abelian category and is stable under tensor product.
If D is an object of this sub-category, we may define the dual object D* =
Z(D, Ky) of D, the set of linear maps n: D — K such that
o w(m)=conop !,
e N(n)(d) =—-n(Nd), for all d € D.

Definition 6.36. A filtered (¢, N)-module over K consists of a (p,N)-
module D over Ko and a filtration on the K-vector space D = Ko ®k, D
which is decreasing, separated and ezhaustive, i.c., such that Fil’ Dk(i € Z),
the sub K -vector spaces of Dk satisfy
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e Fil'™ Dy C Fil' Dy,

e (Fil'Dg =0, [JFil'Dgk=Dx.
i€EL 1€ZL

A morphism n : Dy — D of filtered (¢, N)-modules is a morphism of (¢, N)-
modules such that the induced K-linear map N : K ®k, D1 — K ®g, Do
satisfies

ni (Fil' Dy i) C Fil' Do, for alli € 7.

The set of filtered (¢, N)-modules over K makes a category. We denote it
by MF (¢, N).

Remark 6.37. The category MFg (¢, N) is an additive category (but not
abelian). Moreover,

(1) There is an tensor product:
Dy ® Dy = D1 ®K, D2
with ¢, N as in Remark 6.35, and the filtration on
(D1®D2)k = K®k,(D1®K,D2) = (KQ®k,D1)®(K®K,D2) = D1k QK Dok
defined by
Fil' (D1 ®k Dok ) = Z Fil"* Dy i @ Fil”® Dok
i1 +ia=i
(2) Koy can be viewed as a filtered (¢, N)-module with ¢ = ¢ and N =0,
and
, i < 0:
Fil g = 4% SO
0, 1> 0.

Then for any filtered (¢, N)-module D, Ko ® D ~ D ® Ky ~ D. Thus Kj is
the unit element in the category.

(3) If dimg, D < oo and if ¢ is bijective on D, we may define the dual
object D* of D by

(D*)K = K®K0 D* = (DK)* ~ D‘Z(DK,K),
Fil'(D*)x = (Fil""" Dg)*.
6.4.2 tN(D) and tH(D)

Assume D is a (¢, N)-module over k such that dimg, D < oo and ¢ is bijec-
tive. We associate an integer ¢y (D) to D here.

(1) Assume first that dimg, D = 1. Then D = Kyd with ¢d = Ad, for
d#0€ D and X € K. p is bijective implies that A # 0.



188 6 Semi-stable p-adic representations

Assume d' = ad, a € Ky, a # 0, such that od’ = N'd'. One can compute
easily that
pd = o(a)\d = @)\d’,
which implies
o(a)
pt

N =)

As 0 : Ky — Ky is an automorphism, v,(A) = v,(\) € Z is independent of
the choice of the basis of D. We define

Definition 6.38. If D is a (¢, N)-module over k of dimension 1 such that ¢
1s bijective, then set
tn (D) == vp(N) (6.17)

where A € GL1(Ky) = K§ is the matriz of ¢ under some basis.

Remark 6.39. The letter N in the expression t (D) stands for the word New-
ton, not for the monodromy map N : D — D.

(2) Assume dimg, D = h is arbitrary. The h-th exterior product
h
/\K DcD R K, D RK, - QK, D(h times)
0

is a one-dimensional Ky-vector space. Moreover, @ is injective(resp. surjective,
bijective) on D implies that it is also injective(resp. surjective, bijective) on
h
Ak, D-
Definition 6.40. If D is a (¢, N)-module over k of dimension h such that ¢
is bijective, then set
tn(D) :=tn( ). (6.18)
Ko

Choose a basis {e1,- - ,ep} of D over Ky, such that ¢(e;) = Z?Zl ai;e;.
Write A = (a;5)1<i,j<h- Given another basis {e},--- e}, } with the transfor-
mation matrix P, write A’ the matrix of ¢, then A = o(P)A’P~!. Moreover
@ is injective if and only if det A # 0, and

Proposition 6.41.
tn(D) = vy(det A). (6.19)

Proposition 6.42. One has

(1) If0 — D' — D — D" — 0 is a short exact sequence of (¢, N)-modules,
then ty (D) = tn (D) +tn(D").

(2) tN(Dl X Dg) = dimKO (Dg)tN(Dl) + dimKO (Dl)tN(Dg).

(8) tn(D*) = —tn(D).
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Proof. (1) Choose a Ky-basis {e1, - ,ep} of D' and extend it to a basis
{e1,--- ,en} of D, then {€y41,---,€,} is a basis of D”. Under these bases,
suppose the matrix of ¢ over D’ is A, over D" is B, then over D the matrix
of pis (4 5). Thus

tn(D) = vp(det(A) - det(B)) =ty (D') + tn(D").

(2) If the matrix of ¢ over D; to a certain basis {e;} is A, and over
Dy to a certain basis {f;} is B, then {e; ® f;} is a basis of D1 ® Dy and
under this basis, the matrix of ¢ is A ® B = (a4, ,4,B). Thus det(A ® B) =
det(A)dim Pz det(B)4™ P1 and

tN(Dl ® Dg) = vp(det(A & B)) = dimKO(Dg)tN(Dl) + dimKO(Dl)tN(D2).

(3) If the matrix of ¢ over D to a certain basis {e;} is A, then under
the dual basis {e}} of D*, the matrix of ¢ is o(A™1), hence ty(D*) =
vp(deto(A™1)) = —v,(det A) = —tn (D). O

Proposition 6.43. If D is a (¢, N)-module such that dimg, D < oo and ¢
is bijective, then N is nilpotent.

Proof. If N is not nilpotent, let k be an integer such that N*(D) = N**+1(D) =
-++= N™(D) for all m > h. Then D' = N*(D) # 0 is invariant by N, and by
@ since N™p = p™@N™ for every integer m > 0. Thus D’ is a (¢, N)-module
such that N and ¢ are both surjective.

Pick a basis of D’ and suppose under this basis, the matrices of ¢ and
N are A and B respectively. By Ny = ppoN we have BA = pAc(B). Thus
vp(det(B)) =1+ vp(det(a(B))) = 1 + v,(det(B)), this is impossible. O

Now let Filx be the category of finite-dimensional filtered K-vector spaces.

Definition 6.44. Suppose A € Fili is a finite dimensional filtered K -vector

space.
(1) If dimg A = 1, define

tg(A) ;== max{i € Z: Fil' A = A}. (6.20)

Thus it is the integer i such that Fil' A = A and Fil'™ A = 0.
(2) If dimg A = h, define

t(4) = tu(\| 4). (6.21)

where /\];( AC ARk, A®K, -+ A (h times) is the h-th exterior algebra of A
with the induced filtration.
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There is always a basis {e1, -+ ,en} of A over K which is adapted to the
filtration, i.e., there exists i1,--- , 4, € Z such that for any integer ¢,
Fil'(A) = EB Ke;,.
iy
Then

h
tu(A)=>ij.
j=1
Proposition 6.45. One has
ty(A)=> i-dimggr’ A (6.22)
€L
with gr' A = Fil' A/Fil'™ A by definition.

Proposition 6.46. (1) If 0 - A" — A — A” — 0 is a short exact sequence
of filtered K -vector spaces, then

tn(A) =ty (A) + tn(A").

(2) tH(Al ® Az) = dimK(AQ)tH(Al) + dimK(Al)tH(Ag).
(3) tu(A*) = —tu(4).

Proof. (3) follows from definition. By Proposition 6.45, ¢t is compatible with
the filtration, thus (1) follows.

To prove (2), let {ej,---,exn} and {f1,---, fi} be bases of A; and A,
respectively, compatible with the filtration. Then {e; @ f; | 1 < i < h, 1 <
j <} is a basis of A; ® Ag, compatible with the filtration. Then (2) follows
from an easy computation. a

Remark 6.47. We have a similar formula for ¢5(D) like (6.22). Let D be a
(¢, N)-module such that dimg, D < co and ¢ is bijective on D. In this case
D is called a ¢-isocrystal over K. Then

D =D D,

acQ

where D,, is the part of slope a. If k is algebraically closed and if o = % with
r,s € Z,s > 1, then D,, is the sub Ky-vector space generated by the d € D’s
such that ¢°d = p"d. The sum is actually a finite sum. Then

tn(D) =) adimg, Dq. (6.23)

It is easy to check that adimg, D, € Z.
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6.4.3 Admissible filtered (¢, N)-modules.
Let D be a filtered (y, N)-module D over K, we set
tg(D) =tg(Dg). (6.24)

Recall a sub-object D’ of D is a sub Ky-vector space stable under (¢, V), and
with filtration given by Fil' D} = Fil" Di N Di.

Definition 6.48. A filtered (¢, N)-module D over K is called admissible if
dimg, D < o0, ¢ is bijective on D and

(1) tu(D) = tn(D),

(2) For any sub-object D', ty(D") < tn(D').

Remark 6.49. The additivity of ¢y and tgy
tnv(D) =ty(D") +tn(D"), ty(D)=tyg(D")+ty(D")

implies that admissibility is equivalent to that
(1) tu(D) =tn (D),
(2) tg(D") >ty (D"), for any quotient D”.

Denote by MF4Z(¢, N) the full sub-category of MFk (¢, N)) consisting of
admissible filtered (p, N)-modules.

Proposition 6.50. The category MF‘}g(go,N) s abelian. More precisely, if
Dy and Dy are two objects of this category and n : D1 — Dy is a morphism,
then

(1) The kernel Kern = {x € D; | n(z) = 0} with the obvious (p, N)-
module structure over Ky and with the filtration given by Fil’ Kerng =
KernKﬂFiliDlK for nk : Dixk — Dagx and Kerng = K ®Qg, Kern, is
an admissible filtered (v, N')-module.

(2) The cokernel Cokern = Dy/n(Dy) with the induced (¢, N)-module
structure over K and with the filtration given by Fil® Coker nx = Im(Fil" Dok )
for Cokerng = K ®x, Cokern, is an admissible filtered (@, N')-module.

(3) ITm(n) = Colm(n).

Proof. We first prove (3). Since Im(n) and Colm(n) are isomorphic in the
abelian category of (p, N)-modules, and since ng is strictly compatible with
the filtrations, Im(n) = Colm(n) in MF$ (¢, N).

To show (1), it suffices to show that tg(Kern) = tp(Kern). We have
tr(Kern) < tp(Kern) as Kern is a sub-object of Dy, we also have tg(Imn) <
tp(Imn) as Imn = Colmn is a sub-object of Ds, by the exact sequence of
filtered (¢, N)-modules

0 — Kern — D; — Imn — 0,

we have
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tg(D1) =tg(Kern) +tg(Imn) < tp(Kern) + tp(Imn) = tp(Dy).
As tg(Dy) = tp(D1), we must have
ty(Kern) =tp(Kern), ty(Imn)=tp(Imn)

and Kern is admissible.
The proof of (2) is similar to (1) and we omit it here. O

Remark 6.51. If D is an object of the category MF4Z(¢, N), then a sub-object
D’ is something isomorphic to Ker (n : D — Dy) for another admissible filtered
(¢, N)-module Ds. Therefore a sub-object is a sub Ky-vector space D’ which
is stable under (¢, N) and satisfies ty(D') = tn (D).

The category MF‘}g(go, N) is Artinian: an object of this category is simple
if and only if it is not 0 and if D’ is a sub Ky-vector space of D stable under
(¢, N) and such that D’ # 0, D’ # D, then ty(D’) < tn (D).

6.5 Statement of Theorem A and Theorem B

6.5.1 de Rham implies potentially semi-stable.

Let B be a Q,-algebra on which Gk acts. Let K’ be a finite extension of K
contained in K. Assume the condition

(H) B is (Qp, Gg-)-regular for any K’
holds.

Definition 6.52. Let V' be a p-adic representation of Gi. V is called poten-
tially B-admissible if there exists a finite extension K' of K contained in K
such that V' is B-admissible as a representation of Gy, i.e.

B®pe, (B®g, V)°< — B®qg, V
is an isomorphism, or equivalently,
dim o, (B ®g, V)5 = dimg, V.

It is easy to check that if K C K’ C K" is a tower of finite extensions of
K contained in K, then the map

B @ g, (B ®g, V)" — (B®g, V)°r'

is always injective. Therefore, if V' is admissible as a representation of Gk,
then it is also admissible as a representation of G k.

Remark 6.53. The condition (H) is satisfied by B = K, C, Byr, Bar, Bs.
The reason is that K is also an algebraic closure of any finite extension K’ of
K contained in K, and consequently the associated K, C, Byur, Bar, By for
K’ are the same for K.
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For B = K, C, By, and Bgg, then B is a K-algebra. Moreover, BEx’ =
K. In this case, assume V is a p-adic representation of G which is potentially
B-admissible. Then there exists K’, a finite Galois extension of K contained

in K, such that V is B-admissible as a G g/-representation.
Let J = Gal(K'/K), h = dimg, (V'), then

A= (B®g, V)

is a K’-vector space, and dimgs A = h. Moreover, J acts semi-linearly on A,
and
(B®q, V)% = A7

By Hilbert theorem 90, A is a trivial representation, thus K’ @ A7 — A is
an isomorphism, i.e.

dimg A7 = dimg: A7 = dimg, V,
and hence V' is B-admissible. We have the following proposition:

Proposition 6.54. Let B = K, C, By or Bar, then potentially B-admissible
1s equivalent to B-admissible.

However, the analogy is not true for B = Bg;.

Definition 6.55. (1) A p-adic representation of Gi is K’'-semi-stable if it is
semi-stable as a G gr-representation.

(2) A p-adic representation of Gk is potentially semi-stable if it is K'-
semi-stable for a suitable K', or equivalently, it is potentially By -admissible.

Let V be a potentially semi-stable p-adic representation of G, then V
is de Rham as a representation of Gk for some finite extension K’ of K.
Therefore V' is de Rham as a representation of Gg.

The converse is also true.

Theorem A. Any de Rham representation of Gk is potentially semi-stable.

Remark 6.56. Theorem A was known as the p-adic Monodromy Conjecture.
The first proof was given by Berger ([Ber02]) in 2002. he used the theory of
(¢, I')-modules to reduce the proof to a conjecture by Crew in p-adic differ-

ential equations. Crew Conjecture has three different proofs given by André
([And02a]), Mebkhout([Meb02]), and Kedlaya([Ked04]) respectively.

Complements about Theorem A.

(1) Let K’ be a finite Galois extension of K contained in K, J = Gal(K'/K).
Assume V is a p-adic representation of G g which is K’-semi-stable. Then
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Dy (V) = (Byt ®q, V)9’

is an admissible filtered (¢, N)-module over K’.

Write K, = Frac(W (k')), where k' is the residue field of K. Then BS*' =
K. J acts on D' = Dy g/ (V) semi-linearly with respect to the action of J
on K, and this action commutes with those of ¢ and N. In this way, D’ is a
(¢, N, J)-module. The action of J is also semi-linear with respect to the action
of Jon K: for I(K'/K) the inertia subgroup of J, Gal(K|,/Ky) = J/I(K'/K),
if reJ, A€ Kjand d € D, then 7(A\d) = 7(A\)7(9).

Let Dar, k' (V) = (Bar ®g, V)%’. As an exercise, one can check that

Dar,x/ (V) = K' @ D',

and hence
Dar(V) = (K' ®g; D')”.

The group J = G /G acts naturally on (Bgr ®q, V)€« and on K/®K6 D,
the J-action is by 7(A® d') = 7(A\) @ 7(d’) for A € K" and d’ € D’. These two
actions are equivalent.

Definition 6.57. A filtered (¢, N, Gal(K’/K))-module over K is a finite di-
mensional K{)-vector space D' equipped with actions of (¢, N, Gal(K'/K)) and
a structure of filtered K-vector space on (K' ®x; D)Gal(K'/K)

We get an equivalence of categories between K’-semi-stable p-adic repre-
sentations of G and the category of admissible filtered (p, N, Gal(K'/K))-
modules over K.

By passage to the limit over K’ and using Theorem A, we get

Proposition 6.58. There is an equivalence of categories between de Rham
representations of Gk and admissible filtered (o, N, G )-modules over K.

(2) We have analogy results with f-adic representations, cf. Chapter 1. Recall
that if ¢ # p, an ¢-adic representation V of G is potentially semi-stable if
there exists an open subgroup of the inertia subgroup which acts unipotently.

(3) Assume V is a de Rham representation of Gk of dimension h, and let
A =Dgyr(V). Then there exists a natural isomorphism

Byr ®x A = Byr ®q, V-

Let {v1,--- ,vn} be a basis of V over Q,, and {d1,---,d,} a basis of A over
K. We identify v; with 1 ® v;, and §; with 1 ® §;, for ¢ = 1,--- ,h. Then
{v1,--- ,on} and {61,--- ,0n} are both bases of Bqr ®x A = Byr ®q, V over

Bgar. Thus
h

§j = Zbij’ui with (blj) S GLh(BdR).
i=1
Since the natural map K'® i, Bst — Bar is injective, Theorem A is equivalent

to the claim that there exists a finite extension K’ of K contained in K such
that (b”) S GLh(K/ ®K(I) Bst)~
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6.5.2 Weakly admissible implies admissible.

Let V be any p-adic representation of G and consider Dy (V) = (Bst ®q,
V)¢ . We know that Dg (V) is a filtered (p, N)-module over K such that
dimg, Dgt(V) < 0o and ¢ is bijective on Dg(V), and

D.: : Repg, (Gk) — MFk(p, N)

is a covariant additive Q,-linear functor.

On the other hand, let D be a filtered (¢, N)-module over K. We can
consider the filtered (¢, N)-module Bg; ® D, with the tensor product in the
category of filtered (¢, N)-modules. Then

Bst ®D = Bst ®Ko D7

pb@d) = ¢b@ pd,

Nbed) =Nb®d+b® Nd.
Since

K ®K, (Bst ® D) = (K @k, (Bst) ®x Di) C Bar ®k D,

K ®k, (Bst ® D) is equipped with the induced filtration from Bqr @k Di.
The group Gk acts on Bg; @ D by

gb®d) =g(b) ®d,

which commutes with ¢ and N and is compatible with the filtration.

Definition 6.59.
V(D) ={v€By®D |pv=v,Nv=0,1®v € Fil"(K ®, (Bs ® D))}
V(D) is a sub Q,-vector space of Bg, ® D, stable under G

Theorem B. (1) If V is a semi-stable p-adic representation of G, then
D (V) is an admissible filtered (p, N')-module over K.

(2) If D is an admissible filtered (o, N)-module over K, then Vg (D) is a
semi-stable p-adic representation of G .

(3) The functor Dy : RepEp(GK) — MF4%(¢, N) is an equivalence of
categories and Vg : MF‘}(d(go, N) — Repgp(GK) is a quasi-inverse of Dg.
Moreover, they are compatible with tensor product, dual, etc.

Complements about Theorem B.

(1) RepEP(GK) is a sub-Tannakian category of Repg (Gk).
(2) (Exercise) It’s easy to check that

L4 Dst(vl ® Vv2) = Dst(vl) & Dst(vé);
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L4 Dst(v*) = Dst(v)*;
[ ) Dst(@p) = KQ.

Therefore by Theorem B, MF% (¢, N) is stable under tensor product and
dual.

Remark 6.60. (1) One can prove directly (without using Theorem B) that if
D1, Dy are admissible filtered (¢, N)-modules, then D1 ® Ds is again admissi-
ble. But the proof is far from trivial. The first proof is given by Faltings [Fal94]
for the case N = 0 on D; and Ds. Later on, Totaro [Tot96] proved the general
case.

(2) Tt is easy to check directly that if D is an admissible filtered (¢, N)-
module, then D* is also admissible.

The proof of Theorem B splits into two parts: Proposition B1 and Propo-
sition B2.

Proposition B1. If V is a semi-stable p-adic representation of G, then
Dy (V) is admissible and there is a natural (functorial in a natural way)
isomorphism

V 5 Vi (Dge (V).

Exercise 6.61. If Proposition B1 holds, then
Dy : Repy, (Gx) — MF (¢, N)

is an exact and fully faithful functor. It induces an equivalence
Dy : Repy, (Gx) — MF (¢, N)

where MF (¢, N) is the essential image of Dy, i.e, for D a filtered (¢, N)-
module inside it, there exists a semi-stable p-adic representation V' such that
D ~ Dy (V). And

Vi : MF (¢, N) — Repj (Gk)
is a quasi-inverse functor.

Proposition B2. For any object D of MF‘}{d(@7 N), there exists an object V
of Repgp(GK) such that Dg (V) ~ D.

Remark 6.62. The first proof of Proposition B2 is given by Colmez and
Fontaine ([CF00]) in 2000. It was known as the weakly admissible implies
admissible conjecture. In the old terminology, weakly admissible means ad-
missible in this book, and admissible means 7 as in Exercise 6.61.

In next chapter we will give parallel proofs of Theorem A and Theorem
B relying of the fundamental lemma in p-adic Hodge theory by Colmez and
Fontaine.
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Proof of Theorem A and Theorem B

This chapter is devoted to the proofs of Theorem A and Theorem B.

Theorem A. Any de Rham representation of G is potentially semi-stable.

Theorem B. (1) If V is a semi-stable p-adic representation of G, then
D (V) is an admissible filtered (¢, N)-module over K.

(2) If D is an admissible filtered (¢, N)-module over K, then V(D) is a
semi-stable p-adic representation of G .

(3) The functor Dgy : RepEp(GK) — MF% (¢, N) is an equivalence of
categories and Vg : MF$ (o, N) — Repap (Gk) is a quasi-inverse. More-
over, they are compatible with tensor product, dual, etc.

7.1 Admissible filtered (¢, N)-modules of dimension 1
and 2

7.1.1 Hodge and Newton polygons.

We give an alternative description of the condition of admissibility.

Let D be a filtered (¢, N)-module over K. We have defined ¢ (D) which
depends only on the map ¢ on D and ty(D) which depends only on the
filtration on Dp.

To D we can associate two convex polygons: the Newton polygon Py (D)
and the Hodge polygon Pg(D) whose origins are both (0,0) in the usual
cartesian plane.

We know D = @ D, where D,, is the part of D of slope a € Q. Suppose
acQ
a; < ag < ---agy are all o’s such that Dy, # 0. Write v; = dim D,

Definition 7.1. The Newton polygon Py (D) is the polygon with break points
(0,0) and (v1+---4v;, 101 + - - -+ jv;) for 1 < j < m. Thus the end point
of Py (D) is just (h,ty(D)).
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(h,tn (D))

V1 v1 + V2
1

(0,0)

%)

Fig. 7.1. The Newton Polygon Py (D)

The Hodge polygon Py (D) is defined similarly. Let i, < --- < i,, be those
i’s satisfying Fil' Dg / Fil'"! D # 0. Let h; = dimg (Fil” Dy /Fil“ 1! Dy).
Definition 7.2. The Hodge polygon Py (D) is the polygon with break points

(0,0) and (h1+---+hj,ithy +---+i;h;) for 1 < j < m. Thus the end point
of Py (D) is just (h,tg(D)).

(h,tu (D))

}lll h1 -ﬁ ha

i1

12

Fig. 7.2. The Hodge Polygon Py (D)

We can now rephrase the definition of admissibility in terms of the Newton
and Hodge polygons:



7.1 Admissible filtered modules of dimension 1 and 2 199

Proposition 7.3. Let D be a filtered (p, N)-module over K such that dimg, D
is finite and ¢ is bijective on D. Then D is admissible if and only if the fol-
lowing two conditions are satisfied

(1) For any subobjects D', Pg(D’) < Py(D’).

(2) Pi(D) and Pn(D) end up at the same point, i.e., ty(D) =ty (D).

Remark 7.4. Note that a dimg, D,, € Z. Therefore the break points of Py (D)
and Py (D) have integer coordinates.

7.1.2 The case when the filtration is trivial.

Let A be a filtered K-vector space. We say that the filtration on A is trivial
if

Fil” A= A and Fil' A =0.
We claim that given a filtered (¢, N)-module D over K with trivial filtration,
then D is admissible if and only if D is of slope 0 and in this case N = 0.

Indeed, if the filtration on Dy is trivial, then the Hodge polygon is a
straight line from (0, 0) to (h,0).

Assume in addition that D is admissible. Then Py (D) = Py (D), in par-
ticular all slopes of D are 0. Therefore there is a lattice M of D such that
w(M) = M. Since Ny = ppN, we have N(D,) C Dy—1 and N = 0.

Conversely, assume in addition that D is of slope 0. If D’ a subobject of
D, then D’ is purely of slope 0, hence t(D’) =0 and D is admissible.

7.1.3 Tate’s twist.

Let D be any filtered (¢, N)-module. For ¢ € Z, define D(i) as follows:
- D(i) = D as a Ko-vector space,
- Fil"(D{(i))x = Fil'"" Dg for r € Z.
Set _
Nlpu = Nlp, ¢lpu =p "¢l
Then D(i) becomes a filtered (¢, N)-module under the new ¢ and N. It is

easy to check that D is admissible if and only D(i) is admissible.
For any p-adic representation V' of G, recall V(i) = V ®q, Q,(i), then

-V is de Rham (resp. semi-stable, crystalline) if and only if V(¢) is de Rham
(resp. semi-stable crystalline).

We also have

Indeed, for D = Dg (V) = (B ®g, V)9 and D’ = Dg(V(i)) = (Bg ®q,
V(i))9%, let t be a generator of Z,(1), then #' is a generator of Q,(i) and
V(i) ={v®@t'| v € V}. Then the isomorphism D(i) — D’ is given by

d:an®vn»—>d':ant_i@)(vn@ti) =t ot)d

where b,, € Bg, v, € V.
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7.1.4 Admissible filtered (o, N)-modules of dimension 1.

Let D be a filtered (¢, N)-module with dimension 1 over Ky such that ¢ is
bijective on D. Write D = Kyd. Then ¢(d) = Ad for some A € Kj and N
must be zero since NN is nilpotent.

Since Dx = D ®k, K = Kd is 1-dimensional over K, there exists i € Z
such that

Dy, forr<i
Fil’ Dy = § 0K Orr =t
0, for r > 4.

Note that ¢ (D) = v,(A), and tg (D) = i. Therefore D is admissible if and
only if v,(A\) = 1.

Conversely, given A € K5, we can associate to it Dy, an admissible filtered
(¢, N)-module of dimension 1 given by

D)\:K07 90:)‘0-7 N:O7

Dg, forr <w,(A),

Fil" Dg =
n oK {O, for r > vp(A).

Exercise 7.5. If \, X € K}, then Dy = Dy if and only if there exists u € W*
such that X' = - 2%,

In the special case when K = Q,, then Ky = Q,, and o = Id. Therefore
Dy = Dy, if and only if A = X.

7.1.5 Admissible filtered (o, N)-modules of dimension 2.

Let D be a filtered (¢, N)-module with dimg, D = 2, and ¢ bijective. Then
there exists a unique ¢ € Z such that

Fil' D = Dy, Fil'™ Dy # D.
Replacing D with D(i), we may assume that ¢ = 0. There are two cases.

Case 1: Fil' Dx = 0. This means that the filtration is trivial. We have
discussed this case in § 7.1.2.

Case 2: Fil' Dg # 0. Therefore Fil' Di = L is a 1-dimensional sub K-vector
space of Dy . Hence there exists a unique r > 1 such that

DK7 lfjgoa
Fil! D =< L if1<j<r,.
0, if j > r

So the Hodge polygon Py (D) is as Fig. 7.3.
Assume K = Q. Then Ky = Q,, D = Dg, 0 = 1d, ¢ is bilinear. Let
P,(X) be the characteristic polynomial of ¢ acting on D. Then
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(2,7)

Fig. 7.3.
PyX)=X?>+aX +b= (X —A)(X —X2)

for some a, b € Qp, A1, A2 € @p.
We may assume v,(A1) < vp(A2). Then Py (D) is as Fig. 7.4

(2,05 (A1) + vp(A2))

Fig. 7.4.

Then the admissibility condition implies that
vp(A1) > 0 and vy (A1) +vp(Ae) =17 (7.2)
We have the following two cases to consider:
Case 2A: N # 0. Recall that N(D,) C D4—1. Then
vp(A2) = vp(A1) + 1 # vp(Ar).

In particular Ay, Ay € Q,. Let v,(A1) =m. Then m > 0 and r = 2m + 1.
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Assume ey is an eigenvector for Ao, i.e.

p(e2) = Aaea.

Let e; = N(ez), which is not zero as N # 0. Applying Ny = ppN to ez, one
can see that e; is an eigenvector of the eigenvalue A2 /p of ¢, thus Ay = p);.
Therefore

D= Qp(:‘l (&) Qpeg, A € Z;

with

Lp(el) = )\1617 N(el) = 07
p(e2) = pAiea, N(es) = e;.

Now the remaining question is: what is L? To answer this question, we
have to check the admissibility conditions, i.e.

- tH(D) = tN(D);
- tg(D") <tn(D') for any subobjects D’ of D.

The only non-trivial subobject is D’ = Qpe;. We have

r, ifL=D)

t D/ = < y t _D/ =
n(D)=m<r (D) {O, otherwise.

The admissibility condition implies that ty(D’) = 0, i.e. L can be any line
# D'. Therefore there exists a unique o € Q, such that L = Q,(e2 + cveq).

Conversely, given A1 € Zy;, a € Qp, we can associate a 2-dimensional
filtered (¢, N)-module Dyy, o3 of @, to the pair (A1, ), where

Dy 0y = Qper @ Qpez (7.3)
with
pler) = Arer, N(ep) =0,
p(e2) = pAres, N(e2) = e;.
D{)\l,a}a lf.] S Oa
Fil/ Dix,.0p = § Qplez +aer), if 1< < 205(A) +1,
0, otherwise.

Exercise 7.6. D), o} = D/ o} if and only if \; = A} and a = o'
To conclude, we have
Proposition 7.7. The map
(i, \1, ) — D{/\l,a}<i>

Jrom Zx 7y, xQ,, to the set of isomorphism classes of 2-dimensional admissible
filtered (p, N)-modules over Q, with N # 0 is bijective.
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Remark 7.8. We claim that Dyy, oy is irreducible if and only if v,(A1) > 0.
Indeed, Dyy, q) is not irreducible if and only if there exists a nontrivial
subobject of it in the category of admissible filtered (¢, N)-modules. We have
only one candidate: D' = Qpe;. And D’ is admissible if and only if ¢ty (D) =
tn(D'). Note that the former number is 0 and the latter one is v,(A1).

Case 2B: N = 0. By the admissibility condition, we need to check that
for all lines D’ of D stable under ¢, tg (D) < ty(D’). By the filtration of D,

the following holds:
0, ifD #L
t D/ — Y )
#(D) {n if D' = L.
Again there are two cases.

(a) If the polynomial P,(X) = X? 4 aX + b is irreducible on Q,[X].
Then there is no non-trivial subobjects of D. Let L = Qpeq, ¢(e1) = eq, then
p(ez) = —be; —aes and D = Qpe1 ®Qpey is always admissible and irreducible,
isomorphic to D, in the following exercise.

Exercise 7.9. Let a, b € Z, with 7 = v,(b) > 0 such that X? +aX + b is
irreducible over Q. Set

Da,b = Qpel @ QpeQ (74)
with
ple1) = e, N=o.
p(ea) = —bey — aeq,
Da,ba lf.j S 07
Fil! Doy = Qper, if1<j <,
0, otherwise.

Then D, is admissible and irreducible.

(b) If the polynomial P,(X) = X?4+aX +b = (x—\;)(x— \2) is reducible
on Q,[X], suppose v,(A1) < vp(A2), ¥ = vy(A1) +vp(A2). Let e1 and eg be the
eigenvectors of A\; and Ay respectively. Then D = Qpe; @ Qpe2 and Qpe; and
Qpe2 are the only two non-trivial subobjects of D. Check the admissibility
condition, then L is neither Qpe; or Qpez. By scaling e; and ez appropriately,
we can assume L = Qp(e1 + ez). Then D is isomorphic to D , in the
following easy exercise.

Exercise 7.10. Let A1, Ay € Z,,, nonzero, A\; # Az, and vp(A1) < vp(A2). Let
r=vp(A1) + vp(A2). Set

3\1_,,\2 = Qpel b @p62

with

=\
90(61) 1€1, N = 0’
w(e2) = Agea,
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D}, e if j <0,
Fil/ D}, \, = 4 Quler +e2), if1<j<r,
0, otherwise.

Then D) ,, is admissible. Moreover, it is irreducible if and only if v, (A1) > 0.

To conclude, we have

Proposition 7.11. Assume D is an admissible filtered (p, N)-module over
Qp of dimension 2 with N = 0 such that Fil®D = D, and Fil' D # D,0.
Assume D is not a direct sum of two admissible (@, N)-modules of dimension
L. Then either D = D, for a uniquely determined (a,b), or D = DY,  for
a uniquely determined (A1, A\2).

7.2 Proof of Proposition Bl

We recall that

Proposition B1. If V is a semi-stable p-adic representation of G, then
Dy (V) is admissible and there is a natural (functorial in a natural way)
isomorphism

V — Vg (Dgt (V).

7.2.1 Construction of the natural isomorphism.

Let V' be any semi-stable p-adic representation of G of dimension h. Let
D =Dy (V). We shall construct the natural isomorphism

V :> Vst(D) - Vst(Dst(V))

in this subsection.
The natural map

ast @ Bst @k, D — Byt ®q, V

as defined in § 6.3 is an isomorphism. We identify them and call them X.
Let {v1,---,vs} and {01,---,0n} be bases of V over Q, and D over K
respectively. Identify v; with 1 ® v; and 6; with 1 ® §;, then {v1,--- ,v,} and
{61,--+,0n} are both bases of X over Bg;.
Any element of X can be written as a sum of b ® § where b € By, § € D
and also a sum of ¢ ® v, where ¢ € By, v € V. The actions of Gk, ¢, and N
on X are listed below:

Gg-action: g(b®0)=g(b)®4¢
p-action : p(b® ) = p(b) ® p(d), o(c
N-action: NOB®JI)=ND@5+b®@ N(J), N(c
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We also know that X is endowed with a filtration. By the map z — 1 ® x,
one has the inclusion

X C Xgqr = Bar ®B,, X = Bar ®x Dk = Bar ®q, V-
Then the filtration of X is induced by

Fil' Xqr = Fil' Byr ®q, V = Z Fil” Byr ®x Fil® D.
r4+s=1
We define
V(D) ={z € X | p(2)
={z € X | ¢(z)

z,N(z) =0,z € Fil’ X}
z,N(z) = 0,2 € Fil® X4r }.

Note that V' C X satisfies the above conditions. We only need to check that
V(D) =V.

h
Write © = > b, ® v, € Vg (D), where b,, € Bg;. Then
n=1
h
(1) First N(z) =0, i.e. > N(b,)®v, =0, then N(b,) =0forall 1 <n <h,
1

which implies that b:e B, for all n.
(2) Secondly, the condition ¢(z) = x means

h h
n=1 n=1

Then ¢(b,,) = by, which implies that b, € B, for all 1 <n < h.
(3) The condition = € Fil® Xqg implies that b, € Fil° B = By for all
1<n<h.

Applying the fundamental exact sequence (6.16)
0—Q,— B.— BdR/B(;“R — 0,

we have that b, € Q,. Therefore x € V, which implies that V' = V(D).

7.2.2 Unramified representations.

Let D be a filtered (¢, N)-module with trivial filtration. Then D is of slope 0
(hence N = 0) if and only if there exists a W-lattice M such that p(M) = M,
equivalently, if D is an étale p-module over K.

In this case, let Py = Frac W (k) be the completion of the maximal unram-
ified extension of Ky in K. Then Py C B:;is C Bgt, is stable under G g-action,
and G acts on Py through Gx /I = Gal(k/k).

Recall
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V(D) = (Bst @k D)yp=1,8=0 N (Big ® D)
with
(Bst ®K0 D)gp:l,N:O = (Bcris ®K0 D)(p:l D) (PO ®K0 D)Lp:17

which is an unramified representation of Gg of Q,-dimension equal to
dimg, D (cf. Theorem 2.33).
On the other hand, If V' is an unramified representation of G, then

D(V) D (Py ®g, V)°*

which is of Q,-dimension equal to dimg, V. Thus V' is semi-stable and Dy (V')
is admissible. Since Py C Bjz\Fil' Bl, Dy (V) is of trivial filtration and
hence is of slope 0 by § 7.1.2. We get the following consequence.

Proposition 7.12. Fvery unramified p-adic representation of Gg is crys-
talline and Dy induces an equivalence of categories between Rep&rp (Gk), the
category of unramified p-adic representations of Gk (equivalently Repg, (Gk))
and the category of admissible filtered (v, N)-modules with trivial filtration
(equivalently, of étale p-modules over Ky ).

7.2.3 Reduction to the algebraically closed residue field case.
Let P be an algebraic closure of P inside of C, where
K" CPyCP=PK=K",

Then P C Bj;. Note that Bqr(P/P) = Bar(K/K) = Bqr, and ditto for By
and Beis.
For the exact sequence

1—-Ix >Gg — G — 1,
we have I = Gal(P/P). If V is a p-adic representation of G, as Bég =P,
Dar,p(V) = (Bar ®q, V)'*
is a P-vector space with
dimp Dqr,p(V) < dimg, V,

and V is a de Rham representation of Ik if and only if the equality holds.
Dar,p(V) is a P-semilinear representation of Gj. Moreover, it is trivial,
since

P @k (Dar,p(V))* — Dar,p(V)

is an isomorphism. Now
(Dar,p(V))%* = Dar(V) = (Bar g, V)%,

Therefore,
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Proposition 7.13. V is de Rham as a representation of G if and only if V'
is de Rham as a representation of Iy .

Proposition 7.14. V is semi-stable as a p-adic representation of Gx if and
only if it is semi-stable as a p-adic representation of Ik .

Proof. For Dy p(V) = (Bs ®q, V)& | since BSItK = Py, Dgp(V) is a Py-
semilinear representation of G, then the following is trivial:

Py @1, (Det,p(V))* — Dyt p(V)
is an isomorphism, and Dy (V) = (Dg p(V))*. O
Proposition 7.15. Let V be a p-adic representation of Gk, associated with
p: G — Autg, (V).
Assume p(If) is finite, then

(1)V is potentially crystalline (potentially semi-stable) and hence de Rham.
(2) The following three conditions are equivalent:

(a)V is semi-stable.

(b)V is crystalline.

(¢) p(Ik) is trivial, i.e., V is unramified.

Proof. Because of Propositions 7.13 and 7.14, we may assume k = k, equiva-
lently K = P, or Ix = Gk.

(2) = (1) is obvious. (¢) = (b) is by Proposition 7.12. The only thing left
to prove is: (a) V is semi-stable = (c) p(Ik) is trivial.

Let H = Ker p be an open normal subgroup of Ik, then FH = L is a finite
Galois extension of K. Write J = Gk /H. Then

D (V) =(Bs ®g, V)“* = (B @, V))’
=(B{ ®q, V) = (Ko ®q, V)” = Ko ®q, V’

because of BX = K. Therefore
V is semi-stable < dimg, Dg(V) = dimg, V7 = dimg, V & V7 =V,

which means that p(Ix) is trivial. O

7.2.4 Representations of dimension 1.

Let V' be a p-adic representation of G g of dimension 1. Write V' = Q,v, then
9(v) = n(g)v and

n:Gxg —Q,
is a character (i.e. a continuous homomorphism). Moreover, we can make 7
factors through Z;. We call
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Definition 7.16. n is B-admissible if V' is B-admissible.

Then we have B

(1) n is C-admissible if and only if 1 is P-admissible, or if and only if n(Ik)
is finite.

(2) Recall

D, (V) = @P(C(—i) @, V)°¥.
i€z

Then V is Hodge-Tate if and only if there exists ¢ € Z (not unique) such that
(C(—i) ®q, V)E* # 0. Because

(C(=i) ®q, V)" = (C &g, V(=i)“",

the Hodge-Tate condition is also equivalent to that V' (—i) is C-admissible, by
Sen’s Theorem (Corollary 3.57), this is equivalent to that ny~(Ix) is finite
where y is the cyclotomic character. In this case we write 7 = 79x".

Proposition 7.17. If n: Gk — Z;, is a continuous homomorphism, then

(1)n is Hodge-Tate if and only if it can be written as n = nox* with i € Z and
no such that no(Ix) is finite.
(2)n is de Rham if and only if n is Hodge-Tate.
(8) The followings are equivalent:
(a)n is semi-stable.
(b)n is crystalline.
(¢) There exist no : Gx — Z% unramified and i € Z such that 1 = nox".

Proof. We have proved (1). As for (2), V is de Rham implies that V" is Hodge-
Tate, n is de Rham implies that 7 is Hodge-Tate, therefore the condition is
necessary. On the other hand, if 7 is Hodge-Tate, V(—i) is de Rham and so
is V=V(=i)().

(3) follows from Proposition 7.15. O

Remark 7.18. One can check that if D is an admissible filtered (¢, N)-module
over K of dimension 1, then there exists a semi-stable representation V' such
that D ~ Dg(V).

7.2.5 End of proof of Proposition B1.

Let V be a semi-stable p-adic representation of Gx. We want to prove that
D, (V) is admissible. We denote by D = Dy (V).
Let D’ be a sub Ky-vector space of D stable under ¢ and N. It suffices to
prove
tr(D') < tn(D). (7.5)

(1) Assume first that dimg, D’ = 1. Let {v1,--- ,vs} be a basis of V over
Q. Write D’ = K0, then
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pd = A0, A€ Ky, A#£NO.

Thus
tn(D') =v,(A\) =7 and N§ =0.

h
As D = (By ®q, V)9, then § = >_ b; ® v;. Thus
=1

h h
pd = Zg@bi(@vi and N¢§ = ZNbi@)vi,
i=1 i=1
80 wb; = A\b; and Nb; = 0 for all ¢, which implies that b; € Beis-
Assume tz(D') = s. Then § € Fil*(Bar ®q, V) but ¢ Fil*™ (Byr ®g, V).
The filtration
Fils(BdR ®Q, V)= Fil®* Bar ®Q, Vv

implies that b; € Fil® Bgr for all 7. Now this case follows from the following
Lemma.

Lemma 7.19. If b € Be,is satisfies pb = Ab with A € Ky and v,(A\) =r, and
if b is also in Fil"™ Byg, then b = 0.

Proof. Let A = Kpe be a one-dimensional (p, N)-module with e = %e and
Ne =0. Then ty(A) = —r and

K, ifi<—r

Fil' Ag =
nax {o, ifi> -

Vi (A) is a Q,-vector space of dimension 1. Then V(A) = Qb ® e for any
@by = Aby, by # 0. Thus by € Fil” Byg but ¢ Fil"*! Byg. O

Furthermore, we also see that if D = D’ is of dimension 1, then ty (D) =
tn (D).

(2) General case. Let D = Dg(V), dimg, D = dimg, V = h, dimg, D" =
m. We want to prove ty(D’) < ty(D’) and the equality if m = h.

Let V4 = A™V, which is a quotient of V ®---®V (m copies). The tensor
product is a semi-stable representation, so V; is also semi-stable. Then

Du(Vi) = \"Du(V) = A\ D.

Now A" D’ € A" D is a subobject of dimension 1, and

tu(N\" D) =tu(D), tx(/\" D')=tn(D),

the general case is reduced to the one dimensional case. a
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7.3 Qpr-representations and filtered (¢", N )-modules.

7.3.1 Definitions.

Let r € N, r > 1. Denote by Q, the unique unramified extension of Q) of
degree r contained in K. The Galois group Gal(Q,/Q) is a cyclic group of
order r generated by the restriction of ¢ to Qp,-, which is just o, and

Qpr C Py C B, C By

cris
is stable under G and @-actions.

Definition 7.20. A Q,--representation of Gx is a finite dimensional Qpr-
vector space such that G acts continuously and semi-linearly:

g(v1 +v2) = g(v1) +g(v2), g(Av) = g(A)g(v).
Note that such a representation V is also a p-adic representation of G g
with
dime V=r dimer V.
We say that a Q,r-representation V' of Gk is de Rham (semi-stable, - -- ) if it

is de Rham (semi-stable, ---) as a p-adic representation.
Let V' be a Qpr-representation V' of G g, Write

D{(V) = (Byt o @, V)%, m=0,--,r—1

st,r

where ,m®g , is the twisted tensor product by ™. Write Dyt (V') = DgS?T(V).
Then D) (V) are Ko-vector spaces. Write

st,r
DEiTlg?r(V) = (BdR o™ ®@pr V)GK, m=0,---,r—1
and write Dgg_ (V) = D(d(gT(V). Then Dgg?r(V) are K-vector spaces.

Proposition 7.21. For every m =0,--- ,r —1,

dimg, D" (V) = dimg, Dy, (V) < dimg,, V

st,r
with equality if and only if V' is semi-stable.
Proof. One has

r—1
By ®qg, V = @ Bst om @, V.
m=0

Thus

r—1

r—1
Dy (V) = @ (Bst @, V)< = @ DL(V).
m=0

m=0
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(V), then ¢/d € D)) (V), where i + j is the image of i+j mod r,

st,r

Ford € DY

st,r
which implies

dimg, D™ (V) = dimg, Dyt (V),

st,r

thus
dimg, Dg (V) = rdimg, Dg, (V).

The proposition is proved. a
For a Q,--representation V', we have

r—1
Dyr(V) = (Bar ®g, V)" = @ DR, (V).

m=0

If V' is semi-stable, then

Déﬁ?r(v) =K @Ko D(m)(V) = Kqﬂ"”@Ko DSt,T(V)'

st,r

Definition 7.22. A filtered (¢", N)-module over K is a Ky-vector space A
equipped with two operators

o, N: A—> A
such that N is Kg-linear, ©" is o”-semi-linear, and
Ne" =p"¢"N,
and with a structure of filtered K wvector space on
Agm =K m®@g, A

form=0,1,2,--- ,r—1.

7.3.2 Main properties.

If V is a semi-stable Q,r-representation of G, set A = Dg (V). Then A
has a natural structure of a filtered (¢", N)-module over K, The inclusion

A = (By ®q,. V)9 C (By ®q, V)"
shows A is stable by ¢" and N, and the filtration for
Ak =D (V) = K jn@y, A
comes from Bggr ,m Rq,» V.

Ezample 7.23. Q,r is a Qpr-representation of dimension 1, Dy ,(Q,) = Ko
such that ¢" = ¢", N =0, and all filtrations are trivial.
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Let A be a filtered (", N)-module over K, set
D = Qle] @, (e 4,
and set A, = Ko, ,m®y, A. Then D is a filtered (¢, N)-module over K

r—1
and D = Y A,,. Moreover, if V is a semi-stable p-adic representation and
m=0

if A = Dg,(V), then the associated D = Dg(V), A, = Dé:ng(V) and
Ak.m =DSR(V).
We call A admissible if the associated D is admissible.

Proposition 7.24. Let Repapr (GKk) denote the category of semi-stable Qpr-

representations of Gx and MF%Z(@’",N) denote the category of admissible
filtered (¢, N)-modules over K. Then the functor

Dy, : Rep, (Gx) — MF{(¢", N)
18 an exact and fully faithful functor.
Proof. This follows from the above association and the fact that
Dy : Repy, (Gx) — MFi!(, N)

is an exact and fully faithful functor. O

The functor Vg .

Let A be a filtered (¢, N)-module. We set

Vair={v€By®A|¢"(v) =v, N(v) =0, 1®v € Fil’(K ®, (Bss ® A4))}.

Proposition 7.25. If V is a semi-stable Q,--representation, then
Vst,r(Dst,r(V)) =V

Proof. The proof is analogous to the proof of Vg (Dg(V)) = V in § 7.2.1,
just need to taking into account that B, ' = Qpr (cf. Remark 6.27). O

cris

Tensor product.

Let Vi and V, be two Qp--representations. Then V; ®q, Va2 is also a Q-
representation. If V1 and V, are semi-stable, then V; ®q, V2 is a semi-stable
Qp-representation, thus V3 ®q,. V2, as a quotient of Vi ®q, V2, is also semi-
stable. Therefore in this case, for every m =0,--- ,r — 1,

D" (V1) @k, D) (V2) — D{")(Vi ®q,. Vo)

st,r st,r st,r
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is an isomorphism. Similarly, if V3 and V2 are de Rham, then V3 ®q,. Va2 is
also de Rham and analogous results hold.

Let A and A’ be two filtered (¢", N)-modules. Then A®g, A’ is naturally
equipped with the actions of ¢" and N satisfying N¢" = p"¢" N. Moreover,

(A®Kk, AV — Axm O A

as filtered K-vector spaces. Thus A @, A’ is a filtered (", N)-module.

Computation of ty.

Let V be a de Rham Q,--representation. Set Dx = Dgr(V) and ty(V) =
tu(Dk). Set Ak, = D (V) and tg,m(V) = ty(Axm). Then D =

\T

r—1
P A, and
m=0 .
tu(V) =Y tam(V). (7.6)
m=0

Suppose V; and V, are two de Rham Q,--representations, of dimension h;
and ho respectively. Let V =1} ®Q,r Va. Then V' is de Rham and Ag ,, =
(A1)k,m @K (A2) k,m and hence by Proposition 6.46,

tr,m(V) = hatim (Vi) + Pata,m(V2). (7.7)

Thus
ta (V) = hatg (Vi) + hatg (V). (7.8)

If s = rbis a multiple of 7, and if V' is a Qr-representation, then Qp:®q,. V'
is a Qps-representation. Moreover, for m = 0,1,--- ,7b—1, let m be the image
of m mod r, then

tr.m(Qpe ®g,. V) = tirm(V). (7.9)

7.3.3 The Qp--representation V.

(XX: to be fixed)

Let 7 > 1 and X, = {b € BL,_ | ¢"(b) = pb}.

Let P(z) = 2" + pz and let F be the Lubin-Tate formal group associ-
ated to P, i.e., F' is the unique commutative formal group over Z, such that
F(P(x),P(y)) = P(F(z,y)). Through F, mg = pO¢ and mp are equipped
with abelian group structures. For z € mpg, set

frla) = p "],

neEZ

Then
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Proposition 7.26. f,. is an isomorphism of groups from mpg with the above
group structure to X,.. One has an exact sequence

O%V(T)—>Xri>0—>0,

where Vi, is the image of fs of the Lubin-Tate formal group associated to
Qpr, a Qpr-representation of dimension 1.

Proof. We first check that f,. is well defined. Suppose z = (), ... 2™ ...) ¢
R, we can certainly write it as = (2(™), ¢z by setting 2™ = (z(*+D)P for
n < 0. There exist ng € Z such that xz(™") ¢ pO¢. For u = xpnor, then
[u] € Aeis for every n € N and the series

S~ @)L [l
Zp up = Z . (pnr)' € Acris~

Thus

Zp mp = 7"“2}7 up EBC";IS

n=ngqo n=no

Since 271 p~"[u”""] converges in W(R),

no—1 —1
d.op T =pm Y pT ] € B
n=-—oo n=-—o0o

Therefore f,(z) is a well defined element in BT, . It is easy to see that
©"(fr(z)) = pfr(z) and hence f, is well defined over X,.
We show f,. is surjective. For b € X,., assume b € A.,is. Then b is the limit

of elements b,, of the form b, = >, p' [af;] such that ¢"(b,) — pb,

This implies that af;i__:l — an,; tends to 0. (XX to be fixed)

Let X0 = {b € Auis | ¢"(b) = pb, 0(b) € pOc}. To show O(X,) = C, it
suffices to show that 6(X?) = pO¢. Since X0 is closed in Acyis, it is separated
and completed by the p-adic topology, it suffice to show # induces a surjection
from X? to pOc/p*Oc.

Suppose a € pO¢. Suppose «, is a solution of the equation oszr =p. If
p#2orr>2(resp. if p=2and r=1), suppose y € O¢ is a solution of the
equation ,

v’ +ony=pla (resp. y* +y* +ony =p la).

Let x = ary and u € R such that «(") = z. Since u(®) = zP" = py?" € pOc¢, we
have [ ] € Ay for every n € N. Then z = f,.(u) € X, N Agis. By computing
the valuatlon one has

0(z) = u® 4+ pu'” = py?" + pa,y = amod p>Oc
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ifp#A2orr>2 or

0(z) = (u(o))2 +u® 4 241 = 2y* + 242 + 201y = amod 220¢

| —

if p =2 and r = 1. Thus @ is surjective and we actually showed that 6 o f, is
surjective.

Now since XFx = {z € Ky | ¢"(¥) = pr} = 0 and CY% = K # 0,
and since # commutes with the action of G, 6 is not a bijection from X,
to C, i.e., the kernel is not 0 and thus there exists 0 % v € X,. N Fll BdR
Morcover for any nonzero vy, vy € X, NFil' Byg, then v, /v € BZ. 7. We

CrlS
may assume vy /ve € BdR, then vy /vy € Fil° Bé’;;l = Qpr and vy € Qprovg
and Qprvl Qpr’l)g X ﬁFll BdR
O

Now set V() = Fil' Byr N X,., the above lemma tells us that Viry is a
Qpr-representation of dimension 1, and there is an exact sequence

O—>V(r) — X, = (B+ )(pT:p = C—0.

Cris

Thus V() is a crystalline representation. Pick any nonzero v € V|, then
Viry = Qpr - v. Note that ve(v)@?(v) - "1 (v) € BJ; NFil' Bar = Q,(1) =

Cris

Qpt (ct. Theorem 6. 25) as t is invertible in By, so is v. Moreover, since
v e Bl N Fil' Byr, ¢'(v) € B, € Bjg, v=! must be in Fil ™' Bar — By

and ¢'(v) € Big — Fil' Byg.
Now e = v ! ® v € Dy ,(V), thus

cris

Dy, (V) = Koe, " e=p~'e, Ne=0.
Then A = Dst,r(‘/(r)) = Kye, and
Agm = K ;mQp, Koe = Kep,, em =1®e=¢@"(e)

form=20,1,--- ,r—1. If m > 0, then

- K if i <0
Fill Ay, = 4 Kém IS0
: 0, if i > 0.
If m = 0, then
4 Keo, ifi<0;
Fill Ag o = ’ ’
H oK {o, ifi>0.

Thus tgo(Vir)) = —1 and tg m (Vi) = 0 for m # 0.
Moreover, for a € Z, set

V(‘,l _ Symfépr ‘,/(T)’ %f a > 0;
f@p,,,(V(r)“, Qpr), ifa<O.
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Then V(‘;) is a Qpr-representation of dimension 1 and v® is a generator of V(‘;),

and D(m)(V(’i)) is generated by ¢™(v~* ® v*). One has

st,r

0, if i ¢ {—a,0};
gr' Dar(V(7)) = de%‘)i)), ifi = —a;
7920 DdR,r(Vv(r))v ifi =0.
Thus tg (V) = —a and tgm(V,

Remark 7.27. Let m = p or —p be a uniformizing parameter of Q,-. Consider
the Lubin-Tate formal group for Q,- associated to 7. The fact 7 € Q, implies
that this Lubin-Tate formal group is defined over Z,, and

) =0 for m # 0.

V;)(LT) = Qp @1z, Tp(LT)-

Then V/{, is nothing but V,(LT).

7.4 Outline of the proof

7.4.1 Reduction of Proposition B2 to Proposition B.

Lemma 7.28. Let F be a field and J a subgroup of the group of automor-
phisms of F. Let E = F7. Let A be a finite dimensional E-vector space,
and

Arp = F g A.

J acts on Ap through
JA®§) =N ®o0, ifjeJ, NEF, § € A.

By the map § — 1® 6, we identify A with 1 @ A = (Ar)”?. Let L be a sub
F-vector space of Ap. Then there exists A, a sub E-vector space of A such
that L =F®g A’ if and only if g(L) = L for all g € J, i.e., L is stable under
the action of J.

Proof. The only if part is trivial. If L is stable under the action of G, then we
have an exact sequence of F-vector spaces with G-action

0—L— Ap — Ap/L — 0,
Taking the G-invariants, we have an exact sequence of E-vector spaces
0— L¢ — A — (Ap/L)°.

Thus dimg LE = dimp L and A’ = LG satisfies L = F Qg A'. O
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Proposition 7.29. Let D be an admissible filtered (¢, N)-module over K of
dimension h > 1. Let V = V(D). Then dimg, V < h, V is semi-stable and
Ds (V) C D is a subobject.

Remark 7.30. The above proposition implies that, if D is admissible, the fol-
lowing conditions are equivalent:

(1) D ~ Dg (V) where V is some semi-stable p-adic representation.

(2) dimg, V(D) = h.

(3) dimg, V(D) = h.

Proof. We may assume V # 0. Apply the above Lemma to the case
A:D’ cmst:Fracht’J:GK7E:Cs(5K = K,
Then
Ap =Cs ®ky D D By @k, D D V.

Let L be the sub-Cg;-vector space of Cgy @k, D generated by V. The actions
of p and N on By extend to Cy, thus L is stable under ¢, N and G g-actions.
By the lemma, there exists a sub Ky-vector space D’ of D such that

L - Cst ®KO D/.

The fact that L is stable by ¢ and N implies that D’ is also stable by ¢ and
N.

Choose a basis {v1,---,v.} of L over Cy consisting of elements of V.
Choose a basis {dy, -+ ,d.} of D’ over Ky, which is also a basis of L over Cj;.
Since V' C By ®q,, D,

vV = Zbijdjv bij € Bgt.
j=1

By the inclusion By ®k, D’ C Bst ®k, D, we have

/\B (Bst K, Dl) - /\Bst(BSt ® Ko D)’

st

equivalently, . .
By ®k, /\K0 D' C By ®k, /\Ko D.

Let b = det(b;;) € Bss, then b # 0. Let
vo=v1 AU A---ANv., do=dyNdoN---ANd,,

then vy = bdp. Since v; € Vg (D'), then vy € V(A" D’), which is # 0 as
vg # 0. The facts

dimg, \ D' =1 and Vi (\ D) #0
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imply that
tu(\ D) =tn(\ D).

The admissibility condition then implies that ¢ (D) = t (D), thus ty (A" D’) =
tn(A"D’) and

V(A D) = Qyuo.

T
For any v € Vg (D') =V, write v = >_ ¢;v; with ¢; € Cy, 1 <@ < 7, then
i=1

s r /
'01/\'”/\1)1‘_1/\U/\Ui+1/\"'/\1)r:Ci’UoE/\QVCVSt(/\ D):vao,
P

therefore ¢; € Q,. Thus V' as a (Q)-vector space is generated by v, - , v, and
r = (‘thO _D/ < dlmKO D.

Because
V(D) =V and Dg (V) = D',

V is also semi-stable. O

By Proposition 7.29, to prove Theorem A and Theorem B, it suffices to
prove

Proposition A (=Theorem A). Let V be a p-adic representation of Gy
which is de Rham. Then V is potentially semi-stable.

Proposition B. Let D be an admissible filtered (p, N )-module over K. Then
dimg, V(D) = dimg, D.

7.4.2 Outline of the Proof of Propositions A and B.

Let Dg be the associated filtered K-vector space, where

Dar(V), Case A,
Di =
K ®kg, D, CaseB.
Let d = dimg Dk and let the Hodge polygon

Py(V), CaseA,

Pu(Dx) = {PH(D), Case B.

We shall prove Proposition A and Proposition B by induction on the com-
plexity of Py. The proof is divided in several steps.

Step 1: Py is trivial. i.e. the filtration is trivial.
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Proof (Proposition A in this case). From the following exact sequence:
0 — Fil' Byg — Fil’ Bgg = Bj — C — 0,
®V and then take the invariant under G, we have
0 — Fil' Dg — Fil’ D — (C ®q, V)“%.

Because the filtration is trivial, Fil! Dy =0and Fil° Dy = Dk, then we have
a monomorphism Dy = Fil® Dg — (C ®g, V)%, and

dimg (C ®g, V)% > dimg Dg = dimg, V,

thus the inequality is an equality and V' is C-admissible. This implies that
the action of I is finite, hence V is potentially semi-stable (even potentially
crystalline, cf. Proposition 7.15). O

Proof (Proposition B in this case). We know that in this case, D ~ Dy (V)
where
V= (PO QK, D)wzl

is an unramified representation. O

Step 2: Show the following Propositions 2A and 2B and thus reduce to the
case that V and D are irreducible.

Proposition 2A. If0 - V' —V — V" — 0 is a short exact sequence of p-
adic representations of Gy, and if V', V"' are semi-stable and V is de Rham,
then V is also semi-stable.

Proposition 2B. If 0 — D' — D — D" — 0 is a short exact sequence of
admissible filtered (o, N )-modules over K, and if

dimg, Vg (D') = dimg, D', dimg, Vs (D") = dimg, D",
then dimg, V(D) = dimg, D.
Step 3: Reduce the proof to the case that ty = 0.

Step 4: Prove Proposition A and Proposition B in the case tg = 0.

7.5 Proof of Proposition 2A and Proposition 2B

7.5.1 Proof of Proposition 2A

To be filled. Proposition 2A is due to Hyodo [Hyo88] when k is finite using
Galois cohomology and Tate duality. The proof in the general case is due to
Berger [Ber01, Chapitre VI] and uses the theory of (¢, I')-modules. In [Ber(2]
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he also gave a proof as a corollary of Theorem A. We shall give a proof of
Proposition 2A here using Sen’s method which is due to Colmez. (XX: to be
fixed)

By Proposition 2A, we immediately get the proof of Proposition 5.30(3),
which claims that if V' is a nontrivial extension of Q,(1) by Q,, then V is not
de Rham. Indeed, if V' is de Rham, by Proposition 2A, it must be semi-stable.
However, there is no nontrivial extension of (¢, N)-module of D¢ (Q,(1)) by
D, (Qy), which is an easy exercise as in § 7.1.5.

7.5.2 Fundamental complex of D.

For Proposition 2B, we need to introduce the so-called fundamental complex
of D. Write

V2% (D) = {b € Byt ®k, D | Nb =0, @b = b}, (7.10)
V(D) = Bar ®k D/ Fil’(Bar ®x Dk) (7.11)
where

Fil’(Bar ®x D) = Y _Fil' Bar ® Fil ' D.
€L

There is a natural map V9 (D) — V1 (D) induced by
By ®K, D C Bar ®x Dg — VL (Dg).
Then we have an exact sequence
0= V(D) = V(D) — Vg (D).

Proposition 7.31. Under the assumptions of Proposition 2B (not including
admissibility condition), then for i = 0,1, the sequence

0= V(D) = V(D) = VL (D") -0 (7.12)
s exact.

Proof. For i = 1. By assumption, the exact sequence 0 — D% — Dg —
D% — 0 implies that the sequences

0 — Bar @k D — Bar ®kx Dk — Bar @k Dy — 0
and
0 — Fil' Bqr@gFil ™" D} — Fil' Bir®@xFil ™" D — Fil' Bqr@Fil ™" Dy — 0

are exact. Thus we have a commutative diagram (where we write Bqr ® D
for Bar ®k Dk)
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0 0 0
0 — Fil%(Bgr ® D') — Fil’(Bqr ® D) — Fil®(Bgr ® D) — 0

0—>Bir®D' ————>Bir®D ————> Bgr® D" ——>0

0 Va(D') V(D)

V(D)

0

0 0 0

where the three columns and the top and middle rows of the above diagram
are exact, hence the bottom row is also exact and we get the result for ¢ = 1.
For 7 = 0, note that

V%(D)={z € B4 ®K, D| Nz =0, pxr =2}
Let
Vais(D) = {y € Baris @1, D | ¢y =y}
Let u = log[w] for w(® = —p, then

d
Byt = Bais[u], N = —— and ¢u = pu.
du

With obvious convention, any x € Bs ®k, D can be written as

+oo
n
T = E Tpu”, Ty € B R K, D
n=0

and almost all z,, = 0. The map
T — g

defines a Q,-linear bijection between VY (D) and V2, (D) which is functorial
(however, which is not Galois equivalent). Thus it suffices to show that

0— Ve (D)—V?

cris cris

(D) — v

cris

(D//) =0

is exact. The only thing which matters is the structure of ¢-isocrystals. There
are two cases.

(a) the case k is algebraically closed. For the exact sequence
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0—D —-D—D"—0,

it is well known that this sequence splits as a sequence of p-isocrystals. Thus
D~D'®D" and V2, (D) =V (D)a& V2. (D").

cris cris cris

(b) the case k is not algebraically closed. Then

Vidis(D) = {y € Beris ®x, D | oy = y} = {y € Beris ®p, (Po®k, D) | py =y}

with Py = Frac W (k) anci Beis D Py D Ko. Py ®k, D is a g-isocrystal over
Py whose residue field is k, thus the following exact sequence

0— Py®k, D' — Py®k, D — Py®g, D" —0
splits and hence the result follows. O
Proposition 7.32. If V is semi-stable and if D = Dy (V'), then the sequence
0 — V(D) — V(D) — V4(D) = 0 (7.13)
1$ exact.
Proof. Use the fact
Byt ®q, V = Bst ®x, D C Bar ®q, V = Bar ®k Dk,

then
V&(D) ={z € B4®q, V| Nz =0, oz = x}.

As N(b®v) = Nb®wv and ¢(b® v) = ¢b® v, then
Va(D) = Be ®q, V.
By definition and the above fact,
V(D) = (Bar/Bgg) ©q, V.
From the fundamental exact sequence (6.16)
0— Qp, — Bc — Bar/Bir — 0
tensoring V' over Q,, we have
0—V — B.®q, V— (Bar/Big) ®g, V — 0
is also exact. Since V = Vg (D),
0 — V(D) — V%(D) - VL(D) -0

is exact. O
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Proof (Proof of Proposition 2B). Let 0 — D’ — D — D" — 0 be the short
exact sequence. Then we have a commutative diagram

which is exact in rows and columns by Propositions 7.31 and 7.32. A dia-
gram chasing shows that Vg (D) — Vg (D") is onto, thus dimg, Vg (D) =
dim@p V. (]

7.6 Reduction to the case tgyg = 0.
7.6.1 The case for V.

In this case ty (V) = ty(Dk). For any i € Z, we know that V is de Rham if
and only if V (i) is de Rham. Let d = dimg Dk, then ¢ (V(3)) =ty (Dx)—i-d.
Choose i = %, then ¢t (V (7)) = 0. If the result is known for V' (i), then it
is also known for V' = V(¢)(—i). However, this trick works only if % € Z.

Definition 7.33. If V is a p-adic representation of Gy, let r > 1 be the
biggest integer such that we can endow V with the structure of a Qpr-

. . . . . dimg, V .
representation. The reduced dimension of V' is the integer lm% = dimg,, V.
We have

Proposition 7.34. For h € N, h > 1, the following are equivalent:

(1) Any p-adic de Rham representation V' of Gk of reduced dimension < h
and such that ty (V) = 0 is potentially semi-stable.

(2) Any p-adic de Rham representation of Gx of reduced dimension < h is
potentially semi-stable.



224 7 Proof of Theorem A and Theorem B

Proof. We just need to show (1) = (2). Let V be a p-adic de Rham represen-
tation of G of reduced dimension h, we need to show that V' is potentially
semi-stable.

There exists an integer r > 1, such that we may consider V as a Qpr-
representation of dimension h. For s > 1 and for any a € Z, let V() be the
Qps-representation as given in § 7.3.3, then V%, is also a Q,s-representation
of dimension 1. Choose s = rb with b > 1 and a € Z, and let

V' =V &g, V)

it is a Qps-representation of dimension h. Since V() is crystalline, it is also de
Rham, thus V(‘;) is de Rham and V”’ is also de Rham.
By (7.8), then

ty (V') = dimg,. V - tg(VZ) +dimg,, VE - tu(V) = bty (V) — ah.

Choose a and b in such a way that t (V') = 0. Apply (1), then V’ is potentially
semi-stable. Thus
%4 ®q,s V(g)a =V ®q, Qp: DOV

is also potentially semi-stable. a

7.6.2 The case for D.

Definition 7.35. If D is a filtered (¢, N)-module over K, let r > 1 be the
biggest integer such that we can associate D with a filtered (¢, N)-module A
(i.e. D = A®Rq, [, Qple]) over K. The reduced dimension of D is the integer

dimKO 14
— Y

We have
Proposition 7.36. For h € N, h > 1, the following are equivalent:

(1) Any admissible filtered (v, N)-module D over K of reduced dimension < h
and such that ty (D) = 0 satisfies dimg, V(D) = dimg, (D).

(2) Any admissible filtered (v, N)-module D over K of reduced dimension < h
satisfies dimg, V(D) = dimg, (D).

Proof. We just need to show (1) = (2). Let D be an admissible filtered
(¢, N)-module D over K of reduced dimension h and of dimension d = rh.
Let A be the associated (¢", N)-module. We need to show dimg, V(D) =
dimKO (D) = rh.

By Proposition 2B, we may assume that D is irreducible. Then N = 0
(otherwise Ker (N : D — D) is a nontrivial admissible subobject of D).
Moreover, for any nonzero x € D, D is generated as a Ky-vector space
by {z,0(z), - ,¢"" 1 (x)} and A is generated as a Kp-vector space by
{z,0" (), , 0" "D (2)}. Indeed, let D(z) be generated by ¢*(x), then D(x)
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is invariant by ¢ and D is a direct sum of ¢-modules of the form D(x), thus
D(x) is admissible and it must be D by the irreducibility.

Let a = tuy(D), b = h. Let D(py = Dst(V(‘;h)), and let Aqp) =
DSt,rh(V(?nh)) which is one-dimensional. We also have N = 0 in this case.

We consider the tensor product D’ = D ®epr-module D(rn) as @ -module.
Then D’ is associated with a ¢™*-module A’ = A ®q, ] A(rn) and is of
reduced dimension < h. Moreover, let {e1,--- ,ep} be a Kp-basis of A, f

be a generator of A, then A7 (m = 0,1,---,7h — 1) is generated by
{™(e1®f), -, 9" (er®f)}. We claim that D’ is admissible and ¢tz (D’) = 0.

The second claim is easy, since by the above construction and the definition
of ty, we have ty(D') = h(tg(D) —a) = 0.

For the first claim, for z # 0, z € D, let D, be the Ky-subspace of D
generated by ¢ (z) for i € N, let D!, be the Ky-subspace of D’ generated by
©"™(z2® f) for all z € D,. Then D!, is the minimal subobject of D’ containing
x ® f and every subobject Dj of D’ is a direct sum of D!. However, we
have tH(D;c) = dimKO Dz . tH(D(rh)) + htH(Dx) and tN(D;) = dimKO Dm .
tN(D(rny) + htn (D), thus the admissibility of D implies the admissibility of
D/

Now by (1), D’ satisfies dimg, Vs (D') = dimg,(D’), which means V' =
V(D) is a semi-stable Q,-»-representation. Thus W = V' ®,n Vi 18
also semi-stable, the associated (¢™, N) is given by A’ ®Q, 7] Az‘rh). One
sees that D is a direct factor of Dy (W), hence it is also semi-stable and (2)
holds. O

7.7 Finish of proof

Let r,h € N — {0}. By Propositions 7.34 and 7.36, we are reduced to show

Proposition 3A. Let V be a de Rham Qpr-representation of dimension h
with tg (V) =0, then V is potentially semi-stable.

Proposition 3B. Let A be an admissible filtered (¢", N)-module over Ky of
Ko-dimension h, D be the associated filtered (o, N)-module with tg (D) = 0.
Then

dimg,, V(D) = h.

7.7.1 The Fundamental Lemma of Banach-Colmez space.

(XX: to be fixed)
Recall U = {u € Beys | ¢(u) = pu} N Bjy. Set By = B,/ Fil®> Byr. We
have a commutative diagram
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0 —— Qu(1) U C 0
- |
0 —— C(1) B, —2 ¢ 0
where all rows are exact and all the vertical arrows are injective.
Suppose s is an integer > 2. Suppose A1, Ag, -+, As € C are not all zero.
Set

Y = {(u1,u2, - ,us) € U° | 3 ¢ € C such that for all n 0(u,) = cA,}.

Then one has an exact sequence

(ui)—c

0 — Q1) —Y C —0.

Suppose by, by, -+ ,bs € By, not all zero, such that Y>> _; A\, 0(b,) = 0. Then
the map

p:Y_)BQa (ulv"'aus)'_)zbiui
i=1

has image in C(1), as 0(37_, biu;) = > 0(b;)0(u;) = ¢y 0(b;)\; = 0.

Proposition 7.37 (Fundamental Lemma, strong version). Assume the
above hypotheses. Then Im p C C(1) and

- either Imp = p(Q,(1)*) and hence dimg, Im p < s,

- orImp=C(1) and dimg, Ker p = s.

To prove the proposition, we need two lemmas.
First recall X, = (B, )?"=P = {b € B | ¢*(b) = pb}.

cris cris

Lemma 7.38. Suppose 1, -+, pus € C, not all zero. Let § : Xy — C be
defined by

() =Y (e ).
r=1
Then ¢ is onto and dimg, Keré = s.

Proof. Let x € mp and set

folz) = p 2]

ne”Z

Similar to the proof of Proposition 7.26, we see that fs(z) is a well defined
element inside Xj.
O
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Remark 7.839. If py, -+, ps are algebraic over K, then the above lemma is
essentially Theorem B (the weakly admissible implies admissible Theorem) in
a special case.

In fact, without loss of generality, we may assume p; € K. We let D =
Koer @ --- @ Koes be a p-isocrystal such that ¢(e;) = e;41 for 1 <i<s—1

and ¢(eg) = %61. Then D is simple and ¢ (D) = —1. If we define the filtration

on Dg by Fil™' D = D, Fil° Dg = L which is a hyperplane in Dg and

Fil' Dg = 0. Then D is an admissible filtered (¢, N = 0)-module. Theorem B

then implies that V(D) is a crystalline p-adic representation of dimension s.
However, in this case, for

B:{R®DK
FﬂO(BdR RK DK)

B4r®py

t( ) Fﬂo(BdR®KDK)

(B:g“is,‘@KOD)‘P:l - Vgris<D) = (BCTiS®K0D)$0:1 and

we have an exact sequence

5_') . BSFR®DK
Fil (BdR KK DK)

0 — V(D) — (B:;‘is @Ko D)wzl

On the other hand, (B, ®p, D)y—1 = X, by sending z ® e; to z and
Bir®@p Fil’(Bar @k Dr) is isomorphic to B,/ Fil' Bar @k Dx /L = C. If
we set L ={x € Dk | >.i_, pie; = 0}, through the isomorphisms, the map ¢’
is nothing but ¢ (as an exercise, one can check the details).

Lemma 7.40. Suppose A1, ---, Ay € C are linearly independent over Q.
Then there exists aq,--- ,as € X such that
(1) Z Al@(@r(al)) =0 fOT r=0,1,---,s—1.
i=0

(2) Let A= (aij)1§1‘7j§8 with Q5 = @iil(aj), then det A 7& 0.

Remark 7.41. (1) We have 6(det A) = 0 since A1, ---, A\s € C are linearly
independent over Q,.

(2) Write d = det A. Then ¢(d) = (—1)°pd. Suppose kg € Q2 such that
kP! = —1. Then ¢(kid) = p(kid), hence rid € Qp(1). We can write d = xt
with k € ng.

(3) Suppose A’ € M,(BY,,) such that A’A = AA’ = tI. For any lifting
(Ao A) of (A, -+, Ay) in B, then

A()\Aly 5‘27 e 75‘S)T = (tﬁlatﬁ27 e 7t58)T
(where 7 means the transpose of a matrix), thus
(Xla 5\23 T 75\5)T = Al(ﬁlaﬂ% e aﬂs)T-

If we varying ):1-, we then get an identity of matrices

Pi=(\}) =A'(Bl) = A'B™!
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with /\1 a lifting of A; for every 1 < j <'s. Choose /\1 such that P € GLy, (B
then B P~'A" € My(BL.,) and A’ =

CI‘IS)

cris

Proof (Proof of Proposition 7.37). Our proof is divided into two steps:
(1) Suppose A1, - - - , A are linearly independent over Q. Choose a1, - - - , as
as in Lemma 7.40. We shall define an isomorphism

S
a:Y — X, yz(u1,~--,us)Hx:Zai%.
; 7

First ¢®(x) = px since ¢ (al) = pa; and ¢(u;/t) = u;/t. To see that b € X,
we just need to show b € B, .

However, tz = Y a;u; € BL.., by Theorem 6.25(1), it suffice to show
9(@ (tz)) =0 for all r € N, or even for 0 <r < s—1. In this case, ¢"(tz) =

4 Z p(ai)ui and (¢ (tz)) = cp’ Z 0(¢" (ai))Xi = 0.
We define an map o' : X, — Y and check it is invertible to . Note that
At 2 8T — (g o(x),- -, 0% (x))T. Since det A = kt, we can find

to oty
A" e Mp(BT.,) such that A’A = AA" =tI, we just set

CFIS)
o (z) = (z,0(x), -, 0" @) AT = (z,0(x), - " (@) BT PT.

It is clear to see that o/(x) € Y. From the construction one can check « and
o are inverse to each other.

-1
The composite map X, = Y 2 C(1) then sends z € X, to

(b1 b ) A, 0(@), - 0* T @) = (b, b ) PB(x, (@), 0* T (@) =) e ().

Since 6((by, - ,bs)P) = 0, 6(¢,;) = 0. Thus the composite map is nothing
but x — t->°_ 0(%)0(¢" " (z)). By Lemma 7.38, p is onto and Kerp is a
Qp-vector space of dimension s.

(2) Suppose A1,---, s are not linearly independent over Q,. We sup-
pose Aj,---, Ay are linearly independent and Ag4q,--- , As are generated by
A1y, Ag. Thus

>‘j = Zb”>\1, bij S Qp'
i=1
Let Y/ be the corresponding Y for A1,---, Ay. One checks easily that

Y — Y @Q,1)*",

’
S

S
(U1,"' ’Us) — (ulw" yUs?y Ug’ 1 — E bi,s’-i—lui;"' y Us/ 41 — E bi,sui)

i=1

is a bijection. Let v; = u; — Y _, b;ju; for j > s', then

S

r=1
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’

pla) = (bi+ Y bjaglui+ Y b

i=1 j=s'+1 j=s'+1

7.7.2 Application of the Fundamental Lemma.

If V is a finite dimensional Q,-vector space, we let Vo = C®q, V. By tensoring
the diagram at the start of this subsection by V(—1), we have a commutative
diagram

0 1% U(-1)®q, V. —— Vo(=1) —— 0
incll incll Idl
0 Ve By(—1)®g, V. —— Vo(~1) —— 0

where all rows are exact and all the vertical arrows are injective.

Proposition 7.42. Let V' be a Qp-vector space of finite dimension s > 2.
Suppose there is a surjective By-linear map n : Ba(—1) ®q, V — Ba(—1)
and denote T} : Vo(—1) — C(—1) the deduced C-linear map by passage to
the quotient. Suppose X is a sub-C-vector space of dimension 1 of Vo(—1)
and X its inverse image of U(—1) ®q, V. Suppose that X C Ker7, then the
restriction nx of n on X can be considered as a map from X to C.

Suppose n(V) # n(X). Then nx : X — C is surjective and its kernel is a

Qp-vector space of dimension s.

Proof. Suppose {e1,ea, - ,es} is a basis of V over Q,. Then e}, =t"! @e,
forms a basis of free Bo-module By(—1) ®q, V. Write n(e},) = v, ® t~! with
Un € BQ.

The images €, of e}, in Vo(—1) forms a basis of it as a C-vector space.
Suppose A = 37 _, A\, €, is a nonzero element of X. The fact that X C Ker7
implies that > A\,0(v,) = 0 and we can apply the precedent proposition. The
map v : U* — U(—1)®q, V which sends (u1,uz, -+ ,up) to 3. (up @t ) Qe
is bijective and its restriction vy on Y is a bijection from Y to X. One thus
have a commutative diagram

Yy —2— c@)
Vyl lxt‘l
X =, ¢

whose vertical lines are bijection. The proposition is nothing but a reformu-
lation of the Fundamental Lemma. O
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Proposition 7.43. Let V; be a Q,-vector space of finite dimension s. Suppose
A = BS'R ®q, V1 and Az a sub—B;'R—module of A1(—1) such that (A + A3)/ Ay
and (A1 + Ag)/As are simple B&"R-modules. Let X be the inverse image of
Ay 4 Ay in U(—1) ®q, Vi and

P U(—l) ®QP Vl — /11(—1)//12

the natural projection. Then
(1) either dimg, p(X) < s and the kernel of p is not finite dimensional

over Qp;
(2) or p is surjective and its kernel is a Q,-vector space of dimension s.

Proof. We begin by observing that, since Bd+R is a discrete valuation ring with
residue field C, the hypotheses implies that (A; + A2)/A; and (A + A3)/As
are C'-vector spaces of dimension 1. Then for some A > 2, we can find elements
e, ¢ in B(J{R ®q, V and sub—B(;"R—module Ag of Aq, free of rank h — 2 such that

AlzBiR°6@B:{R'€I@A0, AngiR%*leEBBgRiel@Ao.

One thus has two commutative diagrams: the first one is exact on all rows
and columns

0 0
| |
0 v X (Al/z/l?) 0
| | |
0 i U(-1) ®q, Vi —— M(-1)/Ay —— 0
| |
A(—1) A1(-1)
A +Ay T A+ A
| |
0 0
the second
0 —— X —— U(-1) @ VI ——— Ay(—1)/(A1 + A2)

| |# [1a
0 —— (A +Ag) /Ay —— Ay(=1)/Ay —— Ay(=1)/(As + 4s)

is exact on rows.
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We have By(—1) = A;(—1)/A;(1). If € (resp. €') denotes the image of t1e
(resp. t~1e’) in this Be-module, which is then the direct sum of a free rank 2
Bsy-module of basis {e, €'} and the By-module Ag = Ag(—1)/Ag(1).

We denote by 1 : Ba(—1)®V; — Ba(—1) the map which sends ae+a’e’ +b
to a’t~! (where a,a’ € By and b € Ay). The image of the restriction nyx of
n on X is contained in C and the diagram above induces the commutative
diagram

0 X U1 @ Vi —— Ay(=1)/(A1 + 4s)
JVWX lp lld
0 C Ay (-1)/ Ay —— Ay (=1)/(A1 + A2)

(where C' — A;(—1)/Ay is the map which sends ¢ to ct~'¢’) where the rows
are exact.

One can see that the image X of X in A;(—1)/4; = (C ® V1)(—1) is a
C-vector space of dimension 1 contained in the kernel of 7. One can also see
that X is the inverse image of X in U(—1) ® V;. One then can apply the
precedent proposition. If n(Vy) = n(X) we are in case (1). Otherwise, nx is
surjective, so is p and the kernel of p which is equal to the kernel of nx is of
dimension s over Q. a

7.7.3 Recurrence of the Hodge polygon and end of proof.

We are now ready to prove Proposition 3A (resp. 3B), and thus finish the
proof of Theorem A (resp. B).

We say V (resp. A or D) is of dimension (r,h) if V (resp. A) is a Qpr-
representation (resp. a (¢", N)-module) of dimension h. From now on, we
assume that V (resp. A) satisfies (V) =0 (resp. ty(D) = 0.

We prove Proposition 3A (resp. 3B) by induction on h. Suppose Propo-
sition 3A (resp. 3B) is known for all V' (resp. A’) of dimension (', k') with
h' < h and r’ arbitrary, we want to prove it is also true for V (resp. A) of
dimension (7, h).

Consider the set of all convex polygons with origin (0,0) and end point
(hr,0). The Hodge polygon Py of V (resp. D) is an element of this set. By
Step 1, we know Proposition 3A (resp. 3B) is true if Py is trivial. By induction
to the complexity of Py, we may assume Proposition 3A (resp. 3B) is known
for all V' (resp. A’) of dimension (r, h) but its Hodge polygon is strictly above
Py (V) (resp. above Py (D)). By Proposition 2A (resp. 2B), we may assume
V' (resp. D) is irreducible.

Recall D = Dgr(V) (resp. Dxg = D Qg, K). For V, we let Ak, =
D((ﬂ)z) (V). Then in both cases,

sT

r—1 r—1

Dy = EB Agm, Fil'Dg = EB Fil' Dg N Agc .-

m=0 m=0
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We can choose a basis {d;} of Dk such that it is compatible with the filtration
{Fil' Dk} and the graduation Dy = @Tm;lo Ag m. To be precise,

- If 4; is the largest integer such that §; € Fil“ Dy, then for every i € Z,
Fil' Dk is the K-vector space with a basis of all §; such that i; > 1,

- Forevery 0 <m <r—1, Ak, is the K-vector space with a basis of all
d; contained in it.

By this way, then h; = dimg Fil* Dy / Fil"™ Dk is the number of j such that
i;j = i, and one has 0 = tg = Z;Zl ij. Since Py is not trivial, by changing
the order of d;, one can assume that ip > 7; + 2.

We fix this basis of Dg.

Proof of Proposition 3B.

We consider the (¢, N)-module A’ defined as follows:

- the underlying (¢", N)-module structure is the underlying (¢, N)-module
structure of A;

- since D% = Dk, for the basis {d; : j=1,--- ,rh} of D, the filtration is
given as follows,

ih =iy +1, iy =iy — 1, if = ij for j > 2.

Then A’ is a filtered (", N)-module of dimension h. Let D’ be the associated
(p, N)-module. Then ¢ty (D) = tg(D) —1+1 =tg(D) = 0 and ty(D') =
tn (D). Moreover, let E’ be a subobject of D’ as (p, N)-module, different
from 0 and D’ then it is identified with a subobject E of D as (y, N)-module,
different from 0 and D. Then one has ty(E') = ty(E), and ty(E') =ty (E)+
e with e € {-1,0,1}. Since D is admissible, tg(E) < ty(FE), since D is
irreducible, tg(E) < ty(F) and we have ty(E') < tx(E’), which implies that
D’ is an admissible (¢, N)-module.

Since the Hodge polygon of D’ is strictly above that of D, by induction
hypothesis, we have dimg,, Vs (D’) = h, which means that V' = V(D’) is
semi-stable and Dy (V') = D’. Note that

V(D) = V(D) = {x € By ®Kk, D | ¢(x) = x and Nz = 0}.
Suppose W = Bar ®x Dk = Bar @k D, Ay = Fil’(Bar ®k DY) =
Sy Fil 7 Bag @ Fil' DY and Ay = Fil’(Ba @k Di). Then V; = V' =
V(D) (resp. Vo = V(D)) is the kernel of the composite map

V% (D) C By ®x, D C W — W/A;

for ¢ = 1,2. V1 is semi-stable of dimension rh, and thus

Ay = Fil’(Bar @k Di) = Fil’(Bar ®q, V1) = B ®o, Vi.
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In this case, by Proposition 7.32,
0— Vi — V(D) = W/A = V(D) =0

is exact. To prove Proposition 3B, it suffices to show that dimg, V2 > rh.
Note that A5 is a sub-Bj-module of A;(—1) and that (A1 + Az)/A; and
(A1 + A2)/ Ay are simple Bjj;-modules. We can apply Proposition 7.43. Note
that U(—1) C Be. Then U(—1) ®g, Vi C V(D) and the kernel of p is
contained in V5. Thus it is of finite dimension and its dimension must be rh,
as a result dimg, Vo > rh and Proposition 3B is proved, so is Theorem B. O

Proof of Proposition 3A.

Lemma 7.44. There ezists no G g -equivariant Qp-linear section of By to C.

Proof. Suppose Vj is a nontrivial extension of Q,(1) by Q. We know it exists
and is not de Rham (see Proposition 5.30). Thus dimg Dar(Vp) = 1 and
hence Dgr (Vy') = Homg, () (Vo, Bar) is also of dimension 1.

If the lemma is false, we can construct two linearly independent map of
Qp[Gr]-module from V; to Bgr and thus induce a contraction. The first
one is the composition Vy — Qp(1) — Bggr. For the second one, since
Ext@p[GK](Qp(l),C) = HL .(K,C(—=1)) = 0 (see Proposition 5.24), we have
an exact sequence Homg (q,](Vo,C) — Homg,[,)(Qp, C) — 0, thus the
inclusion Q, — C' is extendable to Vj — C. Compose it with the section
C — By, we get a Gg-equivariant Qp-linear map from Vy — B. Now term
by term, the nullity of H'(K,C(i)) implies that the extension Vj — By can
be extended to Vo — Bz = im o B/ Fil" Bi;. It is easy to see the two
maps are independent. a

Definition 7.45. A BIR—representation of Gk is a BCTR-module of finite
type endowed with a linear and continuous action of Gx. A morphism of
B:R—representations is a G -equivariant B;IR—map. The category of all Bc'fR—
representations is denoted as RepB;r (Gk), which is an abelian category.
R

A BIR—Tepresentation 1s called Hodge-Tate if it is a direct sum of B(;LR—
representations of the form B, (i) = Fil' Bqr/ Fil'™™ B:{R = (BdR/thé"R)(i)
form € N— {0} and i € Z.

Remark 7.46. (1) The category Repp: (Gk) is artinian. B, (i) is an inde-
composable object in this category.

(2) The subobjects and quotients of a Hodge-Tate Bl,-representation is
still Hodge-Tate.

Lemma 7.47. Suppose
0—=W =W —-W"—=0

18 an exact sequence of Hodge-Tate BiR—representations. For this sequence
to be split, it is necessary and sufficient that there exists a G gk -equivariant
Qy-linear section of the projection of W to W.
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Proof. The condition is obviously necessary. We now prove that it is also
sufficient. We can find a decomposition of W = @;:1 W, as a direct sum
of indecomposable B, (i)’s, such that W/ = W' NW,, and W' = @' _, W/,
then W is a direct sum of W,,/W/.. By this decomposition, we can assume
t = 1. It suffices to prove that for r,;s,i € Z with r,s > 1, there exists no
G k-equivariant section of the projection B,14(i) to B,(4). If not, the section
B,.(i) — By1(i) induces a G g-equivariant map

i+r—1p+ itr—1p+ itr—1p+
gtr-1pt  gir-lpt gitrlpd

] + i s+ i 1R+
trBY.HrtsBh IR

Cli+r—1)= =By(i+r—1)

which is a section of the projection By (i+7—1) to C(i+r —1). By tensoring
Zp(1 —r — 1), we get a Gx-equivariant Q,-linear section of By to C, which
contradicts the precedent lemma. a

We now apply Proposition 7.43 with V; = V. Since V is de Rham, we let
A = B(TR ®q, V = FilO(BdR ®k Dg). This is a free B;R—module with a basis
{e; =t7% ®6; |1 <j<rh}. Suppose

e =t ter, e, = tey, and e; =e¢; forall 3 <j <rh.

The sub—Bg'R—module Ay of Ay(—1) with basis e;- satisfies the hypothe-
ses of Proposition 7.43. With notations of that proposition, the quotient
(A1 + Az)/A; is a C-vector space of dimension 1 generated by the image of

ef =t~ ®§; and is isomorphic to C'(—i; — 1). One has an exact sequence
0-V—-X—->C(—iy—1)—0. (7.14)

This sequence does not admit a G g-equivariant Q,-linear section. In fact, one
has an injection X — U(=1)®@V — Ba(—1)® V = A;1(—1)/A;(1). The last
one is a free By-module of basis b; the image of t 7%~ ® §,. The factor with
basis by is isomorphic to Ba(—i; — 1) and the projection parallel to this factor
induces a G i-equivariant commutative diagram

o— vV — X L C(=ii—1) —— 0

! ! dl

0 —— C(—i1) — Bo(—i1 —1) —— C(~i1 —1) —— 0

whose rows are exact. If the sequence at the top splits, so is the one at the
bottom, which contradicts Lemma 7.44.

Note that V' = V; is not contained in the kernel of p: otherwise V is
contained in Ao, and it is also contained in the sub-BJz-module of A;(—1)
generated by V; which is A, this is not the case.

Since the map p is Gg-equivariant and since V is irreducible, the restric-
tion of p at V' is injective. We have p(V') # p(X) (otherwise, X =V @ Ker p,
contradiction to that (7.14) is not split). Therefore dimg, p(X) > rh. By
Proposition 7.43, p is surjective and its kernel V5 is of dimension rh over Q,.
We can see that V3 is actually a Q,r-representation of dimension h.
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Lemma 7.48. The B('IR—linear map B;_R®Qp‘/2 — Ag induced by the inclusion
Vo — As is an isomorphism.

Proof. Since both Bd+R ® V5 and A are free BCTR—modules of the same rank, it
suffices to show that the map is surjective. By Nakayama Lemma, it suffice to
show that, if let Ay, be the sub—Bg'R—module of Ay generated by V5 and tAs,
then Ay, = As.

By composing the inclusion of U(—1) ® V' to A;(—1) with the projection
of A1(—1) to A;(—1)/Ay,, we obtain the following commutative diagram

0—— Vo —— UEFD®V —— Ay(—=1)/Ady —— 0

o] | i

0 —— Ao/Ay, —— Ai(=1)/Ay, —— Ai(=1)/Ay — 0

with the two rows are exact, which implies that there exists a Q,-linear
G i-equivariant section of the last row. Since A;(—1)/Ay,, as a quotient of
A1(—1)/A5(1), is a Hodge-Tate Bj;-representation, by the previous lemma,
the last row exact sequence splits as B;{R—modules.

If, for 1 < j < rh, let u; (resp. u;) denote the image of t~%~! @ 4,
in A;(—1)/Ay, (resp. A;(—1)/A3), then w; = 0, tu; = 0 for j > 3, and
A1(—1)/As is the direct sum of free By-module of basis uy and C-vector
space of basis u; for j > 3. Since As/Ay, is killed by ¢, one then deduces that
t2uy = t?(uz — Uz) = 0 and tu; = 0 for j < 3, then t 27! ® 5 and ¢t~ ® §;
for j > 3 are contained in Ay,. Hence Ay, contains the sub—B:{R—module
generated by those elements and t~* ® §;, which is nothing but A; N A,. Since
Ay /(A1 N Ag) is a simple B(’{'R—module, it suffices to show that Ay, # A1 N As,
or V5 is not contained in A;. This follows from (U(—-1)® V)N A; =V and
V' N Va = 0 since the restriction of p at V' is injective. O

By inverting ¢, from the above lemma, we have an isomorphism of Bqr ®q,
Vo to Bgr ®q, V' which is Gx-equivariant. We thus have an isomorphism
D = Dgr(V2) to D = Dgr(V') and hence V3 is a de Rham representation.
Write ¢f =41 +1, i5 =iy — 1, and z; =i for 3 < j <rh. By B(TR@QPV = /M
and B;'R ®q, Vo = Aa, for every i € Z, we have

Fil' Di = €P K4;, and Fil' D} = P K9;.

15 >10 it >4
iz iz

It follows that the Hodge polygon of V5 is strictly above that of V. The
inductive hypothesis then implies that V5 is potentially semi-stable. Replace
K by a finite extension, we can assume that V5 is semi-stable.

We can identify V and V2 as Q,-subspaces of Bgr-vector space W =
Bgr ®q, V. Suppose A € GL.;(Bgr) is the transition matrix from a chosen
basis of V2 over Q, to a chosen basis of V over Q,,. Since ty (V) =ty (V) =0,
the determinant of A is a unit in BJ. Since Vo C U(—1)®V, the matrix A is of
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coefficients in U(—1). Since U(—1) C B, and B.NBj; = Q,, det A is a nonzero
element in Q, and hence A is invertible. Thus the inclusion of Vo C U(—1)®@V
induces an isomorphism of B, ® V5 to B, ® V, hence a fortiori of By ® V5
to Bgt ® V. By taking the Gi-invariant, we get an isomorphism of Dy (Va)
to Dy (V). Since V5 is semi-stable, then dimg, Ds(V) = rh = dimg, (V)
and V is also semi-stable. This completes the proof of Proposition 3A and
consequently of Theorem A. O
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©, Sen’s operator, 97

@: Frobenius map, 12

w, 140

e=(1,eM -..), M £1,122

AT, Bt A1 BO.7] 151

B, 127

£, 140

e = v(p): absolute ramification in-
dex, 15

h;: Hodge-Tate number, 137

iGy iG/H, 23

t: p-adic analogy of 2w, 143

tu (D), 189

tn(D), 187

0071 151

0071162

vlsrl 162

vp: normalized valuation of F', 6

vg: valuation normalized by a, 6

wg, 151

APF, 27



Index

(F, G)-regular ring, 67
(¢, N)-module, 185
dual, 186
filtered, see filtered (¢, N)-module
tensor product, 186
unit, 186
(¢, I')-module, 130
B-representation, 65
admissible, 67
B-representation
free, 65
trivial, 65
G-module, 38
discrete, 40
topological, 38
Hclont (G’ M)
abelian case, 40
non-abelian case, 41
trivial, 41
K-finite, 96
Qpr-representation, 210
{-adic representation, 46
characteristic polynomial, 51
dual, 47
effective of weight w, 53
exterior power, 47
from étale cohomology, 50
Galois, 46
geometric
local field, 62
of finite field, 53
potentially semi-stable, 55
pure of weight w, 53
semi-stable, 55
symmetric power, 47
tensor product, 47
trivial, 46
unramified, 55
Weil-Deligne, see Weil-Deligne rep-
resentation

249

with good reduction, see unram-
ified
with potentially good reduction,
55
K-representation, 111
admissible, 111
p-isocrystal, 190
w-module
étale over F, 71
étale over &£, 79
étale over Og, 79
over &£, 79
over Og¢, 78
over E, 71
p-adic Monodromy Conjecture, 193
p-adic representation, 65
K'-semi-stable, 193
crystalline, 184
potentially B-admissible, 192
potentially semi-stable, 193
semi-stable, 184
p-basis, 18

absolute ramification index, 15

absolute value, 5

absolutely unramified, 15

admissible filtered (¢, N)-module,

191

almost étale condition, 36, 105

almost étale descent, 92, 106

arithmetically profinite, 27

Ax-Sen’s Lemma
characteristic 0 case, 89
characteristic > 0 case, 90

category
neutral Tannakian, 67
strictly full sub-, 67
sub-Tannakian, 67
Cohen ring, 18
cohomologous, 41
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continuous n-coboundaries, 39
continuous n-cochains, 39
continuous n-cocycles, 39
continuous n-cohomology, 39
Crew Conjecture, 193
cyclotomic character, 48

de Rham representation, 146
decompletion, 94, 107
different, 28

directed set, 1

discriminant, 28
distinguished point, 41
divided power envelop, 165

exact sequence of pointed sets, 41

field
p-adic, 7
complete nonarchimedean, 6
local, 7
valuation, 6
field of overconvergent elements, 153
filtered (¢, N)-module, 186
admissible, 191
dual, 187
tensor product, 187
unit, 187
filtered (¢, N, Gal(K'/K))-module,
194
filtered (¢, N, Gal(K'/K))-module
over K, 194
filtered (¢, N)-module
weak admissible, 196
filtered (¢", N)-module, 211
Frobenius
absolute, 4, 115
arithmetic, 4
geometric, 4
Frobenius map, 12
fundamental complex of D, 220
fundamental exact sequence, 183

Galois cohomology, 41
geometric representation, 150

Grothendieck /-adic monodromy The-
orem, 56

Herbrand’s Theorem, 25
Hilbert’s Theorem 90, 43
Hodge-Tate number, 137
Hodge-Tate representation, 136
Hodge-Tate ring, 135

inertia subgroup
wild, 20
inflation-restriction sequence, 43
inverse limit, 1
inverse system, 1

Krasner’s Lemma, 87
Krull topology, 3

lattice, 46

monodromy operator, 174
morphism
strictly compatible with filtra-
tion, 146

nilpotent, 59
overconvergent representation, 157

pointed set, 41

profinite group, 2

profinite set, 2

project system, see inverse system
projective limit, see inverse limit

ramification group
lower numbering, 20, 24
upper numbering, 26
in infinite extension, 27
reduced dimension
of a p-adic representation, 223
of a filtered (¢, N)-module, 224
representation, 45
B-, see B-representation
BGTR, 233
Hodge-Tate, 233
Zy-representation, 46



l-adic, see (-adic representation
p-adic, see p-adic representation
continous, 45
de Rham, 146
Galois, 45
geometric, 150
Hodge-Tate, 136
Mod p, 73
mod p, 65
overconvergent, 157
ring
(F, G)-regular, see (F, G)-regular
ring
p-ring, 13
strict, 13
of integers, 6
of valuations, 6
of Witt vectors, 11
perfect, 13

Sen’s operator, 97
shift map, 12
strict morphism, 146

Tate module

of abelian varieties, 50

of elliptic curves, 49

of multiplicative group, 48-49
Tate twist, 49
Tate’s normalized trace map, 36
Tate’s normalized trace maps, 105
Tate-Sen’s condition, 105
Teichmiiller representative, 8
Teichmuller map, 12

valuation, 5
discrete, 5
equivalent, 6
normalized, 6

of height 1, 5

weakly admissible implies admissi-
ble conjecture, 196

weighted E-linear representation of
WDk, 63

Weil Conjecture, 52

INDEX 251

WEeil group, 60
Weil number
effective of weight w, 53
of weight w, 53
Weil representation, 61
Weil-Deligne group, 61
Weil-Deligne representation, 61
elementary and pure of weight,
63
geometric and pure of weight, 63
Witt polynomials, 9
Witt vector, 11
of length n, 11



